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ABSTRACT 


Recent earthquakes have demonstrated the vulnerability of bridges that cross fault-rupture zones. 

While avoiding building bridges across faults may be the best practice, it may not always be 

possible to do so, especially in regions of high seismicity, such as California. While site-specific 

seismological studies to define spatially-varying ground motions and rigorous nonlinear response 

history analysis (RHA) are necessary for important bridges on “lifeline” routes, such 

investigations may be too onerous for “ordinary” bridges whose design is governed by the 

California Department of Transportation (CALTRANS) Seismic Design Criteria (SDC). The 

overall objective of this research investigation is to develop rational, simplified methods – 

simpler than nonlinear response history analysis (RHA) – rooted in structural dynamics theory, 

for estimating seismic demand for “ordinary” bridges crossing fault-rupture zones. 

Shear keys at abutment of bridges are designed to provide transverse restraint to the 

superstructure during service load and moderate earthquakes. During the maximum design 

earthquake, the shear keys are designed as sacrificial elements to protect the abutment stem-wall, 

wing-walls, and piles from damage, implying that the shear keys will break off before damage 

occurs in piles or abutment walls. However, recent experiments conducted on the seismic 

performance of shear keys designed according to current CALTRANS design criteria indicate 

that “actual” break-off strength of shear keys may be significantly higher than the design value. 

Therefore, the first phase of this investigation focused on developing an improved understanding 

of the role that shear keys play in affecting the seismic response of “ordinary” bridges crossing 

fault-rupture zones. 

For this purpose, seismic responses of bridges subjected to spatially-uniform and spatially

varying ground motions for three shear-key conditions – nonlinear shear keys that break-off and 

cease to provide transverse restraint if deformed beyond certain limit; elastic shear keys that do 

not break-off and continue to provide transverse restraint throughout the ground shaking; and no 

shear keys – are examined. It is shown that seismic demands for a bridge with nonlinear shear 

keys can generally be bounded by the demands for a bridge with elastic shear keys and bridge 

with no shear keys for both types of ground motions. While ignoring shear keys provides 

conservative estimates of seismic demands for bridges subjected to spatially-uniform ground 

motion, such a practice may lead to underestimation of some seismic demands in bridges in 
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fault-rupture zones that are subjected to spatially-varying ground motion. Therefore, estimating 

the upper bounds of seismic demands in bridges crossing fault-rupture zones requires analysis 

for two shear-key conditions: no shear keys and elastic shear keys. It is also demonstrated that 

seismic response of bridges crossing fault-rupture zones may be very sensitive to the strength of 

shear keys indicating that computation of this response, even with nonlinear RHA, may be 

unreliable in the absence of realistic and accurate force-deformation models for shear keys. 

The second phase of this investigation focused on developing two approximate procedures 

for estimating peak responses of linearly-elastic “ordinary” bridges crossing fault-rupture zones: 

response spectrum analysis (RSA) procedure and a linear static analysis procedure. These 

procedures estimate the peak response by superposing peak values of quasi-static and dynamic 

responses. The peak quasi-static response in both procedures is computed by static analysis of 

the bridge with peak values of all support displacements applied simultaneously. In RSA, the 

peak dynamic response is estimated by dynamic analysis including all significant modes, which 

is simplified in the latter procedure to static analysis of the bridge for appropriately selected 

forces; usually only one mode – the most dominant mode – is sufficient in the RSA procedure. 

Appearing in these procedures is the “effective” influence vector that differs from the influence 

vector for spatially-uniform excitation, and the response spectrum used in the RSA procedure 

differs from the standard CALTRANS SDC spectrum. Both of these simplified procedures have 

been shown to provide estimates of peak response that are close enough to results of the “exact” 

response history analysis to be useful for practical application. They are suitable for analysis of 

bridges with elastic shear keys or with no shear keys, the two shear-key cases that must be 

considered according to findings in the first phase of this investigation. 

The third and final phase of this investigation extended the approximate procedures 

developed in the second phase to estimate seismic demands for “ordinary” bridges deforming 

into their inelastic range. This phase of investigation led to development of three approximate 

procedures for estimating seismic demands for bridges crossing fault-rupture zones and 

deforming into their inelastic range: modal pushover analysis (MPA), linear dynamic analysis, 

and linear static analysis. These procedures estimate the total seismic demand by superposing 

peak values of quasi-static and dynamic parts, as in the case of linearly-elastic bridges. The peak 

quasi-static demand in all three procedures is computed by nonlinear static analysis of the bridge 

subjected to peak values of all support displacements applied simultaneously. In the MPA and 
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the linear dynamic analysis procedures, the peak dynamic demand is estimated by nonlinear 

static (or pushover) analysis and linear static analysis, respectively, for forces corresponding to 

the most-dominant mode. In the linear static analysis procedure, the peak dynamic demand is 

estimated by linear static analysis of the bridge due to lateral forces appropriate for bridges 

crossing fault-rupture zones. The three approximate procedures are shown to provide estimates 

of seismic demands that are accurate enough to be useful for practical applications. The linear 

static analysis procedure, which is much simpler than the other two approximate procedures, is 

recommended for practical analysis of “ordinary” bridges because it eliminates the need for 

mode shapes and vibration periods of the bridge. In light of the procedures developed in this 

investigation, deficiencies in the current procedures being used by bridge engineers for analysis 

of bridges in fault-rupture zones are identified. 
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1. INTRODUCTION 


Recent earthquakes have demonstrated the vulnerability of bridges that cross fault-rupture zones. 

Several bridges were seriously damaged as a result of rupture of causative faults in the 1999 Chi-

Chi earthquake (EERI, 2001; Yen, 2002), 1999 Kocaeli earthquake (EERI, 2000), and 1999 

Duzce earthquake (Ghasemi et al., 2000). While avoiding building bridges across faults may be 

the best practice, it may not always be possible to do so, especially in regions of high seismicity, 

such as California. It is estimated that that more than 5% of all bridges in California may either 

cross faults or lie in very close proximity to fault-rupture zones. 

Bridges crossing fault-rupture zones will experience ground offset across the fault and hence 

spatially-varying ground motion. While site-specific seismological studies to define spatially

varying ground motions and rigorous nonlinear response history analysis (RHA) are necessary 

for important bridges on “lifeline” routes, such investigations may be too onerous for “ordinary” 

bridges whose design is governed by the CALTRANS Seismic Design Criteria (SDC) 

(CALTRANS, 2006). “Ordinary” bridges are defined as normal weight concrete bridges with 

span lengths less than 90 m supported on the substructure by pin/rigid connections or 

conventional bearings. The bent caps of “ordinary” bridges terminate inside of the exterior 

girders, and their foundations consist of spread footings, piles, or pile shafts with underlying soil 

that is not susceptible to liquefaction, lateral spreading, or scour. A large fraction of bridge 

inventory in California falls in the category of “ordinary” bridges. For such structures, simplified 

procedures for estimating seismic demands are needed to facilitate their seismic evaluation and 

design. Therefore, overall objective of this research investigation is to develop rational, 

simplified methods – simpler than nonlinear response history analysis (RHA) – rooted in 

structural dynamics theory, for estimating seismic demand of bridges crossing fault-rupture 

zones. 

This investigation has been implemented in three phases: (1) understanding the role of shear 

keys in seismic behavior, (2) development of linear analysis procedures, and (3) development of 

nonlinear analysis procedures. Comments on the procedures currently being used by bridge 

engineers for analysis of “ordinary” bridges crossing fault-rupture zones are included. 

This report has been organized as follows. Chapter 2 presents the structural systems, 

modeling approach, and the response quantities considered. Chapter 3 describes the ground 
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motions considered in this investigation. Chapter 4 examines the role of shear keys in seismic 

behavior of bridges in fault-rupture zones. Chapter 5 develops procedures for linear analysis of 

bridges crossing fault-rupture zones, which are extended in Chapter 6 to nonlinear analysis of 

bridges. Chapter 7 comments on analysis procedures currently being used by bridge engineers in 

light of the procedures developed in Chapters 5 and 6. Finally, Chapter 8 presents conclusions 

and recommendations of this investigation. 
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2. STRUCTURAL SYSTEMS AND RESPONSE QUANTITIES 


2.1 Structural Systems and Modeling 

The structural systems considered in this investigation are as follows: (1) a three-span symmetric 

bridge (Figure 2.1a); (2) a three-span unsymmetric bridge (Figure 2.1b); (3) a four-span 

symmetric bridge (Figure 2.1c); and (4) a four-span unsymmetric bridge (Figure 2.1d). These 

bridges, with no skew, are supported on abutments at the two ends and intermediate single

column bents. The span lengths and bent heights are shown in Figure 2.1. The bases of columns 

in the bents are fixed (restrained in all six degrees-of-freedom). The deck, a multi-cell box girder, 

is expected to accommodate two traffic lanes (Figure 2.2). The columns selected are 1.5 m 

diameter circular sections, with helical transverse (or hoop) steel and longitudinal steel arranged 

at its periphery (Figure 2.3). The area of longitudinal steel is selected between 2% and 3% of the 

gross columns area, and hoop steel selected is 1% of the column volume to represent well 

confined columns; such heavy reinforcement is appropriate for columns in bridges crossing fault

rupture zones. Although not reported here for reason of brevity, a parametric analysis for 

different ratio of longitudinal and hoop steel indicated that the observations and conclusions 

presented in this report are relatively insensitive to these parameters.  

Abut. 4 Abut. 4 

30 m 30 m 

30 m 30 m 

Abut. 1 30 m 6 m 
Bent 3 6 m 

Abut. 1 15 m 

Bent 3 
Bent 2 Fault 

(a) Bent 2 
Fault 

(b) 

Abut. 5Abut. 5 
30 m 30 m 

30 m 30 m 
30 m 20 m 

Bent 4 Abut. 115 mAbut. 1 30 m Bent 46 m 6 mBent 3 
Bent 3Bent 2Fault 

Bent 2 Fault(c) 
(d) 

Figure 2.1. Bridges considered: (a) three-span symmetric bridge, (b) three-span 
unsymmetric bridge; (c) four-span symmetric bridge; (4) four-span unsymmetric bridge. 
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Figure 2.2. Cross section of the bridge deck. 
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r 
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Cover 

Longitudinal Steel 
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Confined Concrete 

Figure 2.3. Column cross-section. 

The structural systems considered in this investigation do not necessarily represent “actual” 

bridges. They were selected in consultation with CALTRANS engineers to investigate the bridge 

behavior for varying parametric conditions: the number of spans (three-span versus four-span 

bridges) and asymmetry in bridge geometry (symmetric-bridges versus asymmetric bridges). It is 

assumed that the conclusions gleaned from analyzing the seismic behavior of these structural 

systems bridges will be generally applicable for most “actual” bridges. 

The selected bridge systems were analyzed using the structural analysis software Open 

System for Earthquakes Engineering Simulation (OpenSees) (McKenna and Fenves, 2001), 

whereby the girder was modeled as linearly-elastic beam column elements. In order to capture 

the distribution of mass along the length of the deck, five elements per span was used. Consistent 

with CALTRANS’ recommendations, the gross values for moment of inertia and polar moment 

of inertia were used for a pre-stressed multi-cell box deck girder. The columns were modeled as 

linear beam-column element for linear analysis and nonlinear beam-column elements with fiber 
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section for nonlinear analysis. Details on the modeling are available in McKenna and Fenves 

(2001). 

The inherent damping for all selected bridges was modeled with Rayleigh’s damping 

(Chopra, 2007): c = a0m + a1k , where m  is the mass matrix of the system, k  is the initial elastic 

stiffness matrix of the system, and a0  and a1  are the mass- and stiffness-proportionality 

coefficients. In order to keep damping ratio to be about 5% in most significant modes of the 

selected systems, values of a0  and a1  were selected to be 0.4134 and 0.004837, respectively. 

The abutments were modeled as springs in the longitudinal and transverse directions. The 

longitudinal springs were elastic-perfectly-plastic springs with a gap to account for the gap 

between end of the deck and the abutment back-wall, which is provided to accommodate thermal 

movement. The stiffness, KL , and strength, FyL , of the longitudinal springs were computed 

according to CALTRANS recommendations (CALTRANS, 2006: Section 7.8.1): 

HKL =11500W kN/m (2.1a)
1.7 

FyL 
= 239A H kN (2.1b)

1.7 

where W and H are the width and height of the back-wall in meters, and A  is the area of back

wall in m2 for a seat-type abutment.  

The transverse springs model the contributions of the foundation system as well as the shear 

keys. While CALTRANS provided recommendations on the stiffness of transverse springs that 

model pile-supported foundation, no clear guidelines were given to model shear keys that exhibit 

highly nonlinear behavior with brittle failure. The modeling procedure used in this investigation 

for the transverse springs represents the shear-key-pile-foundation system is presented in Chapter 

4. 

It is useful to emphasize that nonlinearity in the structural systems was restricted to the 

columns and the shear keys (where appropriate). The girder was assumed to remain linear elastic. 

These assumptions were based on consultations with CALTRANS engineers, who indicated 

nonlinearity (or hinging) in the girder to be unacceptable. Furthermore, soil-structure interaction 
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at the two abutments was not explicitly considered because the scope of this investigation is 

limited to “ordinary” bridges, and such detailed analysis may not be necessary. 

2.2 Response Quantities 

The response quantities considered in this investigation are the column drift and deck 

displacement at the abutment. The column drift, which indicates deformation demand in the 

column, is defined as the displacement at top of the column relative to its base displacement. The 

deck displacement at the abutment, which is used to estimate the relative displacement of the 

deck from the abutment, is defined as the displacement of the deck at the abutment relative to the 

displacement at the top of the abutment. 
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3. GROUND MOTIONS 


This investigation examined the seismic demands for selected structural systems subjected to two 

types of ground motions: (1) spatially-uniform ground motion resulting from near-field or far

field earthquakes; and (2) spatially-varying ground motion resulting from rupture of a fault. 

Following is a description of these ground motions. 

3.1 Spatially-Uniform Ground Motion 

For this study, the ground motion recorded during the 1994 Northridge earthquake at the Sylmar 

County Hospital Parking Lot in the north-south direction (Figure 3.1) was selected as the 

spatially-uniform ground motion, with a peak ground acceleration, velocity, and displacement of 

0.844g, 1.29 m/s, and 0.325 m, respectively. This motion represents strong shaking that may 

occur in regions where fault rupture does not extend all the way to the ground surface. This 

motion is applied as uniform excitation to all supports of the selected bridge in the transverse 

direction. 
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Figure 3.1. Spatially-uniform ground motion considered. 
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3.2 Spatially-Varying Ground Motion Across Fault-Rupture Zones 

Ground motions in fault-rupture zones are to be defined at bridge supports in very close 

proximity to the fault (Figure 2.1). Unfortunately, to date, ground motions have never been 

recorded at such fine spacing in close proximity to the causative fault. For this investigation, 

motions were simulated at stations spaced 15 m apart (Figure 3.2) due to a magnitude 6.5 

earthquake in the fault-normal, fault-parallel, and vertical directions across a fault rupture zone. 

The simulation method utilized a fourth order accurate staggered-grid elastic finite-difference 

code, ELAS3D, developed at Lawrence Livermore National Laboratory (Larsen and Schultz, 

1995). Stress-free boundary conditions were used to model the free-surface, and absorbing 

boundary conditions (Clayton and Engquist, 1977) were used to damp artificial reflections from 

the grid boundary. Further details of the procedure to generate ground motions are available 

elsewhere (Dreger et al. 2007). Resulting from this simulation, the fault-parallel and fault-normal 

components of ground acceleration, velocity, and displacement at stations 1-6 are discussed next. 

The vertical motions are not considered in this investigation because they do not lead to column 

drift or deck displacement at abutment, the two response quantities of interest. 

For the selected location of the fault with respect to various bents of the selected structural 

systems (see Figure 2.1), the simulated motions were applied at various supports of the three

span bridges as follows: motions at stations 1, 3, 4, and 6 were applied to abutment 1, bent 2, 

bent 3, and abutment 4, respectively, of the three-span symmetric bridge (Figure 2.1a); and 

motions at stations 2, 3, 4, and 6 were applied to abutment 1, bent 2, bent 3, and abutment 4, 

respectively, of the three-span unsymmetric bridge (Figure 2.1b). The motions were available 

only at abutment 1, bent 2, bent 3, and bent 4 (stations 1, 3, 4, and 6) of the four-span symmetric 

bridge, and at bent 3 and bent 4 (stations 4 and 6) of the four-span unsymmetric bridge. Because 

spatial variation among motions on the same side of the fault is minimal (as demonstrated later), 

motions at abutment 5 of the four-span symmetric bridge were assumed to be identical to those at 

station 6 (Figure 2.1c); and motions at abutment 1, bent 2, and abutment 5 of the four-span 

unsymmetric bridge were assumed to be those at stations 2, 3, and 6, respectively (Figure 2.1d).  
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Fault 

Stn. 1 Stn. 2 Stn. 3 Stn. 4 Stn. 5 Stn. 6 

15 m 15 m 15 m 15 m15 m 15 m 

Figure 3.2. Location of stations across the fault where spatially-varying ground motions 
were simulated. 

3.2.1 Vertical Strike-Slip Faults 

The fault-parallel motions across a strike-slip fault exhibit time variation of ground displacement 

that is a gradual step function, ground velocity that is a single-sided pulse, and ground 

acceleration that is a double-sided pulse (Figure 3.3). As expected, the ground in fault-rupture 

zones exhibits a permanent displacement (or static offset) that occurs over rise-time T . Atr

distance close to the fault, the static displacement is one-half of the average slip of the fault. Both 

the static-offset (or average slip) and rise-time are related to the earthquake magnitude 

[Somerville et al. (1999); also see Appendix A].  
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Figure 3.3. Displacement, velocity, and acceleration in fault-parallel direction at six stations 
across a strike-slip fault during magnitude 6.5 earthquake. 
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Figure 3.3 also shows that the simulated fault-parallel motions are anti-symmetric about the 

fault plane, i.e., fault-parallel motions at stations located equidistant from the fault but on 

opposite sides are essentially the same time functions, but are opposite in algebraic signs. 

Furthermore, the motions at stations 1, 2, and 3 on one side of the fault are essentially identical, 

and motions at stations 4, 5, and 6 on the other side of the fault are also almost identical. This 

indicates that motions at various stations (or locations) across the fault are essentially 

proportional to each other. Thus the displacement at support l , 

u t( )  =α u t( )  (3.1)gl l g 

in which u t( )  is the displacement history of motion at a reference location, and αl is theg

proportionality constant for the lth support. The support motion defined by Equation (3.1) is 

referred to as proportional multiple-support excitation in rest of this report. The validity of this 

hypothesis is demonstrated in Figure 3.4, where motions obtained from Equation (3.1), with 

station 6 selected as the reference location, are compared with the simulated motions. The 

numerical values of αl , computed as the ratio of the peak displacements at the lth station and at 

the reference location (station 6) noted in Figure 4 are close to +1 or –1. 

The fault-normal displacements across a strike-slip fault are essentially identical across the 

fault (Figure 3.5). Therefore, such motions may be treated as spatially-uniform excitation. The 

fault-normal displacements across a vertical strike-slip fault generally do not exhibit static-offset, 

except at locations close to start and end of the fault rupture; such motions are not included here 

for brevity but are available in another report (Dreger et al., 2007). 
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Figure 3.4. Comparison of Equation (3.1) (dashed line) with simulated displacements (solid 
line) in the fault parallel direction as a result of rupture on a strike-slip fault; αl are as 
noted. 
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Figure 3.5. Displacement, velocity, and acceleration in fault-normal direction at six stations 
across a strike-slip fault during magnitude 6.5 earthquake. 

3.2.2 Other Types of Faults 

The validity of Equation (3.1), demonstrated in the preceding section for a strike-slip fault+, is 

found to be approximately valid for fault-parallel component of ground displacements across 

other types of faults (Figure 3.6): a fault with dip of 80° and rake of 170° (D90R170) and a fault 

with dip of 60° and rake of 150° (D60R150). For faults other than strike-slip, however, αl  differ 

significantly from ±1. Note that the dip angle is the angle of the fault plane with respect to a 

horizontal plane on the surface of the earth; and the rake angle is the angle of slip direction on 

the fault with respect to a horizontal line on the fault surface. 

The fault-normal component of ground displacements across dipping faults exhibit similar 

trends (Figure 3.7): (1) displacements exhibit static-offset and vary across the fault; and (2) the 

spatially-varying excitation can be modeled approximately as proportional multiple-support 

excitation with αl  differing from ±1. 

+ Dip =  90° and rake of 180°. Dip is the angle the fault plane makes with a horizontal plane; rake is the slip directin 
in degrees relative to the strike of the fault. 
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Figure 3.6. Comparison of Equation (3.1) (dashed line) with simulated displacements (solid 
line) in the fault-parallel direction as a result of rupture on a fault with two different dip-
rake angle combinations;αl  are as noted. 

Station 1 Station 2 Station 3 Station 4 Station 5 Station 6 

−0.5 

0 

0.5 
−1.016 

D
is

p.
, m

 

D40R110 

−0.982 −0.906 0.574 0.780 1.000 

−0.5 

0 

0.5 
−0.377 

D
is

p.
, m

 

D20R090 

−0.329 −0.251 0.517 0.916 1.000 

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 
Time, s Time, s Time, s Time, s Time, s Time, s 

Figure 3.7. Comparison of Equation (3.1) (dashed line) with simulated displacements (solid 
line) in the fault-normal direction as a result of rupture on a fault with two different dip-
rake angle combinations;αl  are as noted. 

3.2.3 Response Spectrum 

Figure 3.8 shows the pseudo-acceleration response spectrum for the fault-parallel and fault

normal components of ground motion, with permanent offset, in very close proximity (say, 

roughly, 15 meters) to the causative fault. The pseudo-acceleration scale has been normalized by 

the peak ground acceleration ( A u�� ), and the period scale by the rise-time ( T T  ). When go n r

presented in such normalized form, the spectrum is valid for earthquakes over a wide range of 

magnitudes (Appendix A).  
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Figure 3.8. Normalized 5%-damped elastic response spectrum for ground motions in fault-
rupture zones: (a) fault-parallel component on a vertical strike-slip fault with dip of 90° 
and rake of 180°; (b) fault-normal component on a fault with dip of 40° and rake of 110°. 

The CALTRANS SDC spectrum is inappropriate for analysis of bridges crossing fault

rupture zones because it differs considerably from the response spectrum for expected ground 

motions. This becomes apparent by comparing the normalized response spectrum for ground 

motions in fault-rupture zones with the CALTRANS SDC spectrum (Figure 3.9). Note that the 

various spectra in Figure 3.9 are normalized by dividing the spectral acceleration, A , with the 

peak ground acceleration, u��go . Furthermore, the CALTRANS SDC spectrum included in Figure 

3.9 is for peak ground acceleration (PGA) of 0.4g, soil type B, and earthquake magnitude 

6.5±0.25. Although CALTRANS SDC provides spectrum for PGA values in the range of 0.1g to 

0.6g for each earthquake magnitude and soil type, only one spectrum for 0.4g PGA is included 

here for clarity. 
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4. ROLE OF SHEAR KEYS IN SEISMIC BEHAVIOR 


4.1 Introduction 

Reinforced-concrete bridges in California typically consist of a multi-cell box girder deck 

supported on abutments at two ends and single or multiple intermediate bents. The abutment 

consists of two wing-walls, a back-wall, shear keys (exterior), a seat, footing, and piles if needed 

(Figure 4.1). The shear keys at abutment of bridges are designed to provide transverse restraint to 

the superstructure during service load and moderate earthquakes. During the maximum design 

earthquake, however, the shear keys are designed as sacrificial elements to protect the abutment 

stem-wall, wing-walls, and piles from damage, implying that the shear keys will break off before 

damage occurs in piles or abutment walls. The current CALTRANS SDC for shear keys in 

“ordinary” bridges limit the capacity of shear keys to be smaller of 30% of the dead load vertical 

reaction at the abutment and 75% of the total lateral pile capacity (CALTRANS, 2006). 

Footing 

Stem−Wall 

Shear−Key 

Piles 

Seat 

Back−Wall 

Wing−Wall 

Figure 4.1. Typical abutment details. 

Recent experiments conducted on the seismic performance of shear keys designed according 

to current CALTRANS design criteria indicate that “actual” break-off strength of shear keys may 

be significantly higher than the design value (Bozorgzadeh et al., 2003, 2006; Megally et al., 

2001). While shear keys with such higher break-off strengths may lead to damage in abutment 

walls and piles, for bridges subjected to spatially-uniform ground motion they tend to limit the 

deformation demands in other critical locations, such as column drifts and displacement of the 
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deck at the abutments. Therefore, shear keys are generally ignored when idealizing a bridge 

because it is assumed that it provides upper bound estimates of the seismic displacement 

demands. Given that, it is not clear if ignoring shear keys will always provide upper bound 

estimates of these demands for bridges that cross fault-rupture zones and hence be subjected to 

spatially-varying ground motion.  

The objective of this phase of the investigation is to develop an improved understanding of 

the role that shear keys play in affecting the seismic response of “ordinary” bridges crossing 

fault-rupture zones. In particular, the seismic response of bridges subjected to spatially-uniform 

ground motion as well as bridges subjected to spatially-varying ground motion expected in fault

rupture zones is examined with different shear-key conditions.  

4.2 Shear-Key Modeling 

As mentioned in Chapter 2, the structural models include transverse springs to model the 

contributions of the foundation system as well as the shear keys. While procedures to model the 

contribution of the pile-foundation system are available (CALTRANS, 2006), no clear guidelines 

are available to model shear keys. Experiments conducted at University of California at San 

Diego (UCSD) (Bozorgzadeh et al., 2003, 2006; Megally et al., 2001) on shear keys with 

different detailing have shown that shear keys exhibit highly nonlinear behavior with brittle 

failure. Based on these experiments, details to improve the shear key behavior have been 

proposed, including various mechanisms to establish failure load of shear keys. However, force

deformation (or hysteretic) behavior of shear keys to be used in seismic analysis of bridges has 

not yet been finalized. 

This investigation utilized a simple tri-linear force-deformation model (Figure 4.2) based on 

the experiment results obtained from the UCSD research on shear keys (Megally et al., 2001). 

The reference (or starting) strength of the shear key at each abutment was assumed to be equal to 

30% of the dead load vertical reaction at that abutment. Details of the development of the force

deformation behavior of the shear key are presented in Appendix B. 

The tests conducted at UCSD did not include the flexible piles that support the abutment. 

Pile flexibility is included in obtaining the abutment force-deformation behavior by assuming 

that the shear key and the piles act as springs in series. The modified force-deformation 

relationship of the abutment with shear-key-pile system is shown in Figure 4.2; a stiffness of 
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Figure 4.2. Force-deformation behavior of shear keys and abutment. 

7000 kN/m per pile was selected per CALTRANS recommendations (CALTRANS, 2006), 

assuming a total of 12 piles per abutment. Note that including pile flexibility makes 
* * *displacements uy  , un , and um  larger than uy , un , and um  ,but it does not affect the forces Vy 

and V .n

For shear-keys at the abutment, three cases were considered. In the first case, shear keys do 

not engage during the design ground shaking, which is an appropriate model if shear keys are 

designed and constructed to break-off soon after onset of the design ground shaking. For this 

case, denoted as the bridge without shear keys, no springs were specified in the transverse 

direction at the abutment. In the second case, shear keys remain elastic and do not break-off 

during the ground shaking, which is an appropriate model if shear keys are much stronger than 

the design break-off strength. For this case, denoted as the bridge with elastic shear keys, elastic 

springs with stiffness equal to the initial abutment stiffness (see Figure 4.2) were specified in the 

transverse direction. The third case considered nonlinear behavior of shear keys. For this case, 

denoted as the bridge with nonlinear shear keys, shear keys were modeled as nonlinear springs in 

the transverse direction with force-deformation behavior specified by the tri-linear relationship 

presented in Figure 4.2. In the second and third cases, shear keys were assumed to provide 

transverse restraint in both positive and negative direction of the deck displacement, with 
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identical force-deformation behavior in the two directions. Note that bridge columns were 

permitted to respond beyond the linear elastic range for all shear-key conditions. 

In addition to the three shear-key cases defined above, also investigated was how seismic 

demands for the bridge vary depending on the strength of the shear keys. For this purpose, the 

normalized shear key strength was varied between zero and 4, where the value one denotes a 

shear key with the strength equal to 30% of the dead load reaction at the abutment. As the 

normalized shear key strength approaches zero, the bridge behavior approaches that of a bridge 

without shear keys. For values of normalized shear key strength much larger than 1, the bridge 

behavior approaches that of a bridge with elastic shear keys. 

4.3 Seismic Response of Bridges with Shear Keys 

This section investigates the influence of shear keys on the seismic response of the three-span 

symmetric bridge subjected to two types of excitations: (1) spatially-uniform ground motion 

(Figure 3.1), and (2) spatially-varying ground motion characteristic of fault-rupture zones 

(Figure 3.3). For each type of ground motion, examined first are the response histories of the 

bridge with three shear-key conditions – without shear keys, nonlinear shear keys, and elastic 

shear keys – followed by the variation of peak values of seismic demands with shear key 

strength. 

4.3.1 Spatially-Uniform Ground Motion 

Figure 4.3 shows the time-variation of column drift and deck displacement at the abutment of the 

three-span symmetric bridge for the three shear-key cases subjected to spatially-uniform ground 

motion. These results show that smallest of both responses occur for the bridge with elastic shear 

keys; the shear keys continue to provide transverse restraint throughout the ground shaking, 

leading to a stiffer structural system. In contrast, the largest of both responses occur for the 

bridge without shear keys, where there isn’t any transverse restraint. The responses in the bridge 

with nonlinear shear keys, whereby shear keys initially provide transverse restraint but break-off 

if deformed beyond a certain limit, are initially identical to that of the bridge with elastic shear 

keys. After shear keys break-off on both sides of the deck, a bridge with nonlinear shear keys 

oscillates in a manner essentially similar to the bridge without shear keys, but about a different 

permanent drift. 
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Figure 4.3. Response history for a three-span symmetric bridge subjected to spatially-
uniform ground motion: (a) column drift in bent 2, and (b) deck displacement at abutment 
1. 
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Figure 4.4. Variation of peak responses with normalized shear key strength for a three-
span symmetric bridge subjected to spatially-uniform ground motion: (a) column drift in 
bent 2, and (b) deck displacement at abutment 1. 

Figure 4.4 shows how the peak column drift and peak deck displacement at an abutment 

vary with normalized strength of the nonlinear shear key in a bridge with nonlinear shear keys. 

Also included for reference are the peak demands for the bridge with elastic shear keys and the 

bridge without shear keys; for obvious reasons, these demands are independent of the normalized 

shear key strength. As expected, the results presented show that the seismic demands for a bridge 

with nonlinear shear keys of very low strength approach those of the bridge without shear keys 

and the seismic demands for a bridge with very strong shear keys approach those of the bridge 

with elastic shear keys. For intermediate values of normalized shear key strength, seismic 

demands for the bridge with nonlinear shear keys fall between or are bounded by the demand 

values for the bridge without shear keys and bridge with elastic shear keys. 
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4.3.2 Spatially-Varying Ground Motion Across Fault-Rupture Zones 

Figure 4.5 shows the time-variation of column drift and deck displacement at an abutment of the 

three-span symmetric bridge for the three shear-key cases subjected to spatially-varying ground 

motion expected in a fault-rupture zone (Figure 3.3). Comparing the results for the three cases, 

the smallest column drift occurred for the bridge without shear keys, whereas the smallest deck 

displacement occurred for the bridge with elastic shear keys. In contrast, among the three cases, 

the largest column drift occurred for the bridge with elastic shear keys and the largest deck 

displacement occurred for the bridge without shear keys. Thus seismic response trends for a 

bridge crossing a fault-rupture zone differ from that of this bridge subjected to spatially-uniform 

ground motion. In the first case, among the three shear key cases, the largest response may occur 

either in the bridge without shear keys (e.g., deck displacement at the abutment) or in the bridge 

with elastic shear keys (e.g., column drift) (see Figure 4.5), whereas in the second case, the 

seismic demand is largest for the bridge without shear keys (see Figure 4.3). 

Figure 4.5 demonstrates that, as observed previously for spatially-uniform ground motion, 

the response of the bridge (with nonlinear shear keys) crossing a fault rupture-zone is initially 

identical to that of the bridge with elastic shear keys. After break-off of shear keys, the bridge 

oscillated in a manner similar to the bridge without shear keys, but about a different permanent 

displacement. The different permanent displacement, both column drift and deck displacement at 

the abutment (Figure 4.5), in the bridge with nonlinear shear keys after break-off of shear keys 

occurred due to different permanent offset that occurs in the bridge columns (as will be 

demonstrated next). Note that the strength and stiffness of the bridge after shear-key break-off is 

entirely due to the bridge columns. 

Figure 4.6 shows the force-deformation relations for a shear key and a column in a bridge 

crossing a fault-rupture zone. As expected, the shear keys exhibited linearly-elastic force

deformation relationship for the bridge with elastic shear keys, and selected tri-linear force

deformation relationship for the bridge with nonlinear shear keys (Figure 4.6a). In the latter case, 

the shear key ceased to provide any resistance at a deformation of about 0.13 m, denoted as the 

shear key break-off point (Figure 4.6a). The shear key is loaded only in one direction (without 

any unloading or reloading) because the ground displacement, which resembles a step function 

with finite rise time (Figure 3.3), deformed the shear key only in one direction. The column 
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Figure 4.5. Response histories for a three-span bridge subjected to spatially-varying 
ground motion: (a) column drift in bent 2, and (b) deck displacement at abutment 1. 
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Figure 4.6. Force-deformation relations for a three-span symmetric bridge subjected to 
spatially-varying ground motion: (a) shear-key at abutment 1, and (b) column in bent 2. 

experienced significant inelastic action for all three shear-key conditions (Figure 4.6b), with the 

extent of inelastic action depending on the condition of the shear-keys. The column deformed 

farthest into the inelastic range in the bridge with elastic shear keys and the least in the bridge 

without shear keys. The column experienced permanent drift for all three shear-key conditions, 

which was largest in the bridge with elastic shear keys and smallest in the bridge without shear 

keys. 

Figure 4.7 shows how peak column drift and peak deck displacement at the abutment varied 

with normalized strength of nonlinear shear keys, along with the peak demands for the bridge 

with elastic shear keys and for the bridge without shear keys. As in the case of spatially-uniform 
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Figure 4.7. Variation of peak responses with normalized shear key strength for a three-
span symmetric bridge subjected to spatially-varying ground motion: (a) column drift in 
bent 2, and (b) deck displacement at abutment 1. 

ground motion (Figure 4.4), even for a bridge crossing a fault-rupture zone, the seismic demands 

in the bridge with elastic shear keys and without shear keys provided upper and lower bounds for 

seismic demands on a bridge with nonlinear shear keys (Figure 4.7). The bridge without shear 

keys provides an upper bound for deck displacement at the abutment and the bridge with elastic 

shear keys provided a lower bound (Figure 4.7b). This trend reversed, however, for column drift 

for which the bridge with elastic shear keys provided an upper bound and the bridge without 

shear keys led to a lower bound (Figure 4.7a). 

Figure 4.7 also shows that seismic response of bridges crossing fault-rupture zones may be 

very sensitive to the strength of shear keys. For example, column drift in a bridge with very 

strong shear keys (normalized shear key strength greater than two) is more than twice that in a 

bridge with very weak shear keys (normalized shear key strength approaching zero) (Figure 

4.7a). The deck displacement at abutment in a bridge with very strong shear keys is almost 

negligible but becomes very large in a bridge with very weak shear keys (Figure 4.7b).  

4.4 Upper Bounds of Seismic Demands 

Design practice generally requires an upper bound of seismic demand for various parametric 

conditions. Therefore, it is useful to re-examine the results of Figures 4.4 and 4.7 to establish 

which of the three shear-key conditions provides an upper bound of seismic demand.  

The results of Figure 4.4 for a three-span symmetric bridge subjected to spatially-uniform 

ground motions show that the seismic demands in the bridge without shear keys provide an 

upper bound of both seismic demands (column drift and deck displacement at the abutment) on 
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the bridge with nonlinear shear keys. This implies that the current practice of ignoring transverse 

restraint provided by shear keys in estimating seismic displacement demands of bridges is valid 

for spatially-uniform ground motion. 

The results of Figure 4.7 for a three-span symmetric bridge subjected to spatially-varying 

ground motion in a fault-rupture zone demonstrate that ignoring transverse restraint provided by 

shear keys, i.e., by analyzing a bridge without shear keys, may not always provide an upper 

bound value for all seismic demand quantities. For the selected bridge, while ignoring shear keys 

provides an upper bound for deck displacement at the abutment (Figure 4.7b), the column drift is 

underestimated (Figure 4.7a), however, including elastic shear keys provides an upper bound for 

column drift. Therefore, a bridge should be analyzed for both shear-key cases (without shear 

keys and with elastic shear keys) to establish upper bounds for all seismic demands in the bridge. 

For the bridge subjected to spatially-varying ground motion expected in a fault-rupture zone, the 

traditional practice of ignoring transverse restraint provided by shear keys may lead to 

underestimation of some seismic demands.  

The generality of the preceding conclusion is further supported by an examination of the 

peak seismic demands in three other bridges: a three-span unsymmetric bridge, a four-span 

symmetric bridge, and a four-span unsymmetric bridge. The results of Figures 4.8 to 4.10 permit 

the following observations: (1) Each of the two responses (the peak deck displacement at an 

abutment and peak column drift) of the three other bridges are generally bounded by the seismic 

demand estimates for two shear key cases: without shear keys and with elastic shear keys; (2) 

The bridge without shear keys provides an upper bound for deck displacement at an abutment; 

and (3) The bridge with elastic shear keys generally provides an upper bound for column drift. 

The first and second observations are generally valid, but exceptions at a few values of shear-key 

strength are noted in Figures 4.8a and 4.9a. Note, these deviations are minor, therefore, a design 

value for the column drift in a bridge with nonlinear shear keys can be estimated to a useful 

degree of accuracy by analyzing a bridge with elastic shear keys. 
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Figure 4.8. Variation of peak responses with normalized shear key strength for a three-
span unsymmetric bridge subjected to spatially-varying ground motion: (a) column drift in 
bent 3, and (b) deck displacement at abutment 4. 
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Figure 4.9. Variation of peak responses with normalized shear key strength for a four-span 
symmetric bridge subjected to spatially-varying ground motion: (a) column drift in bent 3, 
and (b) deck displacement at abutment 1. 
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Figure 4.10. Variation of peak responses with normalized shear key strength for a four-
span unsymmetric bridge subjected to spatially-varying ground motion: (a) column drift in 
bent 4, and (b) deck displacement at abutment 5. 
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The occurrence of larger deck displacement at an abutment for a bridge without shear keys 

and larger column drift in a bridge with elastic shear keys can be explained based on 

observations on the deflected shape of a bridge to static application of support displacements that 

are expected during fault-rupture. For this purpose, consider the deflected shape of the three-span 

symmetric bridge subjected to equal but opposite motions on two sides of the fault that ruptures 

between bent 2 and bent 3 (Figure 4.11). The bridge without shear keys rotates essentially as a 

rigid body about a vertical axis (Figure 4.11a). For such a deflected shape, the displacement of 

the girder at its two edges, i.e., at the two abutments, are the largest; however, drift in the 

columns, i.e., displacement of a column at the top relative to its bottom, is essentially zero. 

Although, the bridge with elastic shear keys exhibits rotational displacements about the vertical 

axis, it no longer rotates as a rigid body about the vertical axis but involves deformation of the 

girder (Figure 4.11b). Because of stiffness of the shear keys, the displacement at the two edges of 

the girder and hence deck displacements at the two abutments are smaller compared to the bridge 

without shear keys. The column drifts, however, are larger in the bridge with elastic shear keys. 

This occurs because the column bottom moves with the ground but the top is restricted from 

moving due to restraint provided by the girder that is not completely free to rotate as a rigid body 

about the vertical axis due to restraint imposed by the shear keys at its two ends. Although results 

are not presented here for reasons of brevity, similar reasons led to larger deck displacement at 

abutments in bridges without shear keys and larger column drift in bridges with elastic shear 

keys for other systems considered in this investigation. 

(a) (b) 

Figure 4.11. Deflected shape of a three-span symmetric bridge: (a) bridge without shear 
keys; and (b) bridge with elastic shear keys. 
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5. LINEAR ANALYSIS 


5.1 Introduction 

The objective this phase of investigation is to develop rational, simplified methods – simpler 

than response history analysis (RSA) – rooted in structural dynamics theory, for estimating 

seismic demand of bridges crossing fault-rupture zones. This Chapter presents such simplified 

analysis procedures for bridges, assuming they remain linearly elastic, which are extended in 

Chapter 6 to estimate seismic demands for bridges responding in their inelastic range. The 

development of the simplified procedures utilizes special features of the spatially-varying ground 

motions in fault-rupture zones identified in Chapter 3 (see Equation 3.1).  

5.2 Response History Analysis 

5.2.1 Multiple-Support Excitation 

Equations governing the motions of a linearly elastic structure subjected to multiple-support 

excitation are formulated by separating the displacements at the N DOFs of the super-structure in 

two parts (Chopra, 2007: Sec 9.7): (1) us  the quasi-static displacements due to static application 

of the displacements ug  imposed at the supports, and (2) u  the dynamic displacements, 

governed by 

Ng 

�� �mu + cu + ku = −m∑ιl gu t�� ( )  (5.1)l 
l=1 

where m, c, and k are the mass, damping, and stiffness matrices corresponding to structural 

DOF; ��gl ( ) is the acceleration at support l ; ιl  is the influence vector defined as theu t

displacements in the superstructure DOF due to unit displacement at the lth support DOF; and 

Ng  is the number of components of support displacements. The total response is then given by 

N Ng g N 
t s ⎡ ⎤ 

u ( )t = u ( )t +u( )t = ι u t  ( )  +∑ ∑  Γ φ D t  ( )  (5.2)∑ l gl  ⎢ nl n  nl  ⎥ 
l=1 l=1 ⎢⎣n=1 ⎥⎦ 

in which D t( )  is the deformation response of the nth-mode SDF system subjected to ground nl

Tmotion �� ( ) , φ is the nth natural mode of vibration, and Γ =φT ι φ  φ .u t m mgl n nl n l n n 
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5.2.2 Proportional Multiple-Support Excitation 

For such excitation defined by Equation (3.1), Equation (5.1) simplifies to 

mu + cu + ku = −m eff g ( )�� � ι ��u t  (5.3) 

where the “effective” influence vector 

Ng 

ιeff =∑αl lι  (5.4) 
l=1 

is the vector of displacements at all structural degrees of freedom due to simultaneous static 

application of all support displacements with value equal to αl at the lth support, and ��g ( ) isu t

the acceleration at the reference support. 

The right side of Equation (5.3) can be interpreted as effective earthquake forces: 

peff (t ) = −mιeff u t  ��g ( ) (5.5) 

s mι

variation by u t . The force distribution s can be expanded as a summation of modal inertia 

The spatial distribution of these effective forces is defined by the vector = eff  and their time 

��g ( )  

force distribution sn (Chopra, 2007: Section 13.2): 

N N 
mιeff =∑sn =∑Γnmφn (5.6) 

n=1 n=1 

Twhere Γ =φTmι φ mφ . The effective earthquake forces can then be expressed asn n eff n n 

N N 
p ( ) = p ( )t = − u t  (5.7)t s �� ( )eff ∑ eff , n ∑ n g  

n=1 n=1 

The contributions of the nth mode to s and to are:peff

φ s ��s = Γ m p (t ) = − u t  ( ) (5.8)n n n eff , n  n g  

The response of a linearly-elastic multi-degree-of-freedom (MDF) system to peff , n ( )t is 

entirely in the nth mode, with no contributions from other modes. Thus  
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u (t ) = Γn n  n  D t  ( )	 (5.9)φn 

where D tb g  is the deformation response of the nth-mode SDF system subjected to the reference n

ground motion ��gu tb g . It is governed by 

�� � 22 n n  n  +ωn n  −u  t  g ( ) 	  (5.10)Dn + ζ ω D D = ��

Any response quantity r tb g − deformations, internal element forces, etc. − can be expressed as 

str t( ) = r A t  n  n  ( ) 	  (5.11)n 

where rn 
st  denotes the modal static response, the static value of r due to external forces sn , and 

2A t( ) = ωn  n  D t  ( ) 	  (5.12)n 

is the pseudo-acceleration response of the  nth-mode SDF system (Chopra, 2007; Section 13.1). 

The response of the system to the total excitation peff ( )t  is obtained by superimposing the modal 

responses given by Equations (5.9) and (5.11): 

N N 
u ( )t =∑un ( )t =∑Γn n  n  φ D t  ( )  (5.13a) 

n=1 n=1 

N N 
str t( ) = n ( ) = r A t  ∑ r t  ∑ n n  ( )  (5.13b) 

n=1 n=1 

The total displacements of the structure are then given by 

N 
t su ( )t = u	 ( )t +u( )t = ι u t  ( )  + Γ φ D t  ( )  (5.14)eff g	 ∑ n n  n  

n=1 

Note that the responses to individual support motions appear in the summation over Ng in 

Equation (5.2) but they are represented indirectly in the effective influence vector that affects Γn 

and D t( ) in Equation (5.14).n

Equation (5.14) for total response of a bridge crossing fault-rupture zone to proportional 

multiple-support excitation resembles Equation (5.15) for a bridge located on one side of the 

fault subjected to spatially-uniform excitation (Chopra, 2007: Sec. 9.4): 
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N 
t su ( )t = u ( )t +u( )t =ιu ( )t +∑Γ φ D ( )t (5.15)g n n n 

n=1 

where ι  is the influence vector of displacements resulting from static application of a unit 
Tground displacement simultaneously at all supports, and Γ =φT mι φ mφ . However, then n n n 

influence vectors that appear explicitly in Equations (5.14) and (5.15) and implicitly in Γ  andn 

n ( ) eff  represents the structural displacements due to D t  , are very different. In Equation (5.14), ι

static application of all support displacement with value equal to αl  at the lth support, which is 

anti-symmetric about a strike-slip fault. In Equation (5.15), ι  represents the structural 

displacements due to rigid body displacement of the base (or all support displacements) equal to 

1, which is symmetric about the fault. 

5.2.3 Evaluation of Proportional Multiple-Support Excitation Approximation 

The accuracy of this approximation is evaluated by comparing bridge response computed by two 

methods of response history analysis: the “exact” Equation (5.2) for multiple-support excitation 

and Equation (5.14), which is based on approximating the excitation by Equation (3.1). 

Digressing briefly, RHA was not implemented by the modal approach of Equations (5.2) and 

(5.14), but for expedience by directly applying ground displacements to various supports in the 

OpenSees computer program. 

The results presented in Figures 5.1 and 5.2 show that the proportional multiple-support 

excitation provides accurate results. The percentage errors in column drifts may appear large for 

some cases shown in Figure 5.2, but they do not seem consequential because column drifts for 

these cases are generally very small. The results of Figures 5.1 to 5.2 also permit another 

important observation: among the three faults considered, the strike-slip fault (dip angle = 90° 

and rake angle = 180°) causes the largest seismic demands in the transverse direction of the 

bridge. This indicates that a conservative estimate of the seismic demands due to the fault

parallel component of the motions in a fault-rupture zones may be obtained by assuming strike

slip orientation for the fault if dip and rake angles of the fault are not available. 
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Figure 5.1. Comparison of deck displacement at abutments from analyses using multiple-
support (MS) excitation and proportional multiple-support (PMS) excitation 
approximation for three combination of dip angles – 90°, 70°, and 60° – and rake angles – 
180°, 170°, and 150°. 
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Figure 5.2. Comparison of column drifts from analyses using multiple-support (MS) 
excitation and proportional multiple-support (PMS) excitation approximation for three 
combinations of dip angles – 90°, 70°, and 60° – and rake angles – 180°, 170°, and 150°. 

5.3 Estimation of Peak Response 

Of primary interest in practical design of new bridges or evaluation of existing bridges crossing 

fault-rupture zones is their peak response to earthquake excitation. Procedures specially designed 

for bridges crossing fault-rupture zones are proposed where the peak value of the total response, 
t t s suo  and ro , is estimated by adding peak values of the quasi-static response, uo  and ro , and 

dynamic response, uo  and ro : 

t s t su � u + u r � r + r (5.16)o o o o o o 

Such superposition of peak quasi-static and dynamic responses is reasonable because for motions 
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Figure 5.3. History of quasi-static and dynamic responses along with the total response 
from response history analysis (RHA) of a three-span symmetric bridge: (1) Deck 
displacement at abutment 1, and (b) Column drift at bent 2. Results are for response in the 
transverse direction due to fault-parallel motions on a strike-slip fault. 

in fault-rupture zones, the peak value of the dynamic part of the response generally occurs during 

time phase after the quasi-static part of the response reaches, and maintains, its peak value. This 

is demonstrated in Figure 5.3 for a three-span symmetric bridge. Equation (5.16) may be 

interpreted as a special case of the multi-support response spectrum analysis procedure (Der 

Kiureghian and Neuenhofer, 1992) for ground motions in fault-rupture zones because the support 

motions and peak values of quasi-static and dynamic responses are correlated (Neuenhofer, 

2007). 

sThe peak value of the quasi-static response, r , is due to static application of the peak o

values of ground displacements, α u , simultaneously at all supports where u o is the peakl go  g 

value of the ground displacement at the reference support. Presented next are two procedures to 

determine the peak value of dynamic response: response spectrum analysis and static analysis.  
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5.3.1 Response Spectrum Analysis (RSA) Procedure 

The peak dynamic response is estimated by using SRSS or CQC rule, as appropriate, to combine 

the peak modal responses. Although not rigorously valid for ground motions in close proximity 

to the causative fault, these modal combinations will be used and their accuracy evaluated. The 

peak value of the dynamic response, ro , is computed by implementing the following steps: 

1. Compute the vibration periods, T , and mode shapes, φ , of the bridge.n	 n

2. Identify the significant modes that need to be considered in the dynamic analysis based on the 

modal contribution factors as follows: 

2.1 Compute the “effective” influence vector, 	ιeff , the vector of displacements in the 

structural DOF obtained by static analysis of the bridge due to support displacements 

αl , applied simultaneously in the appropriate direction: fault parallel or fault normal. 

st2.2 Compute the static response, r , by static analysis of the bridge due to forces mιeff 

applied at the structural DOF. 

st
2.3 Compute the modal static response, 	rn , from static analysis of the bridge due to 

Tforces sn = Γ  n	 Γ =φT ι φ φ .nmφ applied at the structural DOF, where n n m eff mn	 n 

stst2.4 Compute the modal contribution factor for the nth mode, r = r r (Chopra 2007:n	 n 

Section 12:10). 

2.5 Repeat Steps 2.3 and 2.4 for all modes.  

2.6 Select the number of significant modes, J, such that the error in the static value 
J 

response quantity r, e = −1 ∑ rn , is less than acceptable value, e.g., 0.05.J 
n=1 

st st3. Compute the peak value of the nth mode dynamic response, rno = rn An in which rn  is the 

modal static response (Step 2.3) and A  is the ordinate of the pseudo-acceleration spectrumn

for the reference support acceleration ��g ( )u t  corresponding to the nth-mode SDF system. 

4. Repeat Step 3 for all significant modes identified in Step 2. 

5. Combine the peak modal response by SRSS or CQC modal combination rule, as appropriate, 

to obtain the peak dynamic response, ro . 
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5.3.2 Linear Static Analysis Procedure 

To develop a procedure that is especially convenient for practical application, the RSA procedure 

is simplified to recognize the particular characteristics of ground motions in close proximity to 

the causative fault, based on two observations: 

1. 	 In many cases, the individual modal responses tend to attain their peak values at essentially 

the same time. This is demonstrated in Figure 5.4, where the individual terms in the modal 

summation of Equation (5.14) are presented for the first three participating modes together 

with the total response. Thus, the algebraic sum of the peak responses (instead of CQC or 

SRSS combinations) should provide a reasonable estimate of the peak value of the combined 

response. 

2. For bridges with period of the most dominant mode, T T  > 2.5 , A u�� �1 (Figure 3.8) andr n go 

the excitation will affect the structure like the effective force p (t ) applied statically.eff 
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Figure 5.4. History of modal responses for first three significant modes and total response 
of a three-span asymmetric bridge: (1) Deck displacement at abutment 4, and (b) Column 
drift at bent 3. Results are for response in the transverse direction due to fault-parallel 
motions on a strike-slip fault. 
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Thus, the peak dynamic response can simply be computed by static analysis of the structure 

due to lateral forces (peff ) = mιeff u��go . For a bridge with period of the most-dominant mode in o 

the range 0.4 < T T ≤ 2.5 , the value of A  may be conservatively approximated to be about 2.5 n r 

times u��go , i.e., A � 2.5u��go  (Figure 3.8), and the peak dynamic response may be computed by 

static analysis of the structure due to lateral forces = 2.5mιeff u��go . If all vibration periods (or at 

least period of the most-dominant mode) fall in the range T Tr > 2.5 , A is either close to u��gon 

or less than u��go  (Figure 3.8), and the peak dynamic response may be conservatively estimated by 

static analysis of the bridge due to lateral forces = mιeff u��go . 

An especially simple procedure, which avoids computing the vibration period of the bridge 

and estimating the rise-time of the fault-offset, is achieved at the expense of using a conservative 

value of the lateral forces = 2.5 mιeff u��go ; this is the basis for the static analysis procedure 

presented next. The peak value of the dynamic response, r , is computed by implementing the o

following steps: 

1. Compute the effective influence vector, 	ιeff , as the vector of displacements in the structural 

DOF obtained by static analysis of the bridge due to support displacements αl , applied 

simultaneously. 

2. Estimate the dynamic response r  by static analysis of the bridge due to lateral forces o


= 2.5 mι u�� .
eff	 go 

5.4 Significant Vibration Modes 

Presented in this section are vibration periods, mode shapes, and modal contribution factor 

values of the selected bridges required in RSA procedure. 

5.4.1 Vibration Periods and Modes 

The first six vibration periods and modes of the four selected bridges, each with two shear key 

conditions, are presented in Figures 5.5 to 5.8. The bridge modes may be categorized by their 

primary motion − transverse, longitudinal, torsional, or vertical − although some modes may 

exhibit coupling between two motions, e.g., longitudinal and vertical (Mode 3 in Figure 5.5a), 
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transverse and torsional (Mode 1 in Figure 5.6a). While the fundamental mode of symmetric 

bridges exhibits no coupling with torsional motion (Mode 1 in Figures 5.5 and 5.7), coupling 

occurs between transverse and torsional motions for unsymmetric bridges (Mode 1 in Figures 5.6 

and 5.8). Furthermore, both symmetric and unsymmetric bridge exhibit a predominantly 

torsional mode with no or little coupling with transverse motion (Mode 2 in Figures 5.5a, 5.6a, 

5.7a, 5.7b, 5.8a, and 5.8b and Mode 3 in Figures 5.5b and 5.6b). Some transverse modes exhibit 

flexural deformation of the deck (e.g., Mode 5 in Figure 5.5a), especially for bridges with elastic 

shear keys (Mode 1 in Figures 5.5b, 5.6b, 5.7b, and 5.8b). 

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 

T =0.9601 s T =0.7623 s T =0.3823 s T =0.7282 s T =0.3823 s T =0.3501 s
1 2 3 1 2 3

Mode 4 Mode 5 Mode 6 Mode 4 Mode 5 Mode 6 

T =0.3253 s T =0.3155 s T =0.2973 s T =0.3253 s T =0.2814 s T =0.2763 s
4 5 6 4 5 6

(a) (b) 

Figure 5.5. Vibration periods and mode shapes of a three-span symmetric bridge: (a) 
without shear keys, and (b) with elastic shear keys. 
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T =0.2927 s T =0.2915 s T =0.2078 s T =0.2927 s T =0.2754 s T =0.2058 s
4 5 6 4 5 6

(a) (b) 

Figure 5.6. Vibration periods and mode shapes of a three-span unsymmetric bridge: (a) 
without shear keys, and (b) with elastic shear keys. 
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1 2 3 1 2 3
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T =0.3537 s T =0.316 s T =0.3079 s T =0.3079 s T =0.2948 s T =0.282 s
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Figure 5.7. Vibration periods and mode shapes of a four-span symmetric bridge: (a) without 
shear keys, and (b) with elastic shear keys. 
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Figure 5.8. Vibration periods and mode shapes of a four-span unsymmetric bridge: (a) 
without shear keys, and (b) with elastic shear keys. 

5.4.2 Modal Contribution Factors and Significant Modes 

Associated with the effective influence vector for fault-parallel motions, the deflected shapes of 

the four selected bridges, each with two shear key cases, are presented in Figures 5.9 and 5.10 

for proportional multiple-support excitation for bridges crossing fault-rupture zones and 

spatially-uniform excitation for bridges on one side of the fault, respectively. The effective 

influence vectors exhibit significant torsional motion about the vertical axis for a bridge across a 

fault (Figure 5.9), in contrast to the translational motion of the bridge on one side of the fault 

(Figure 5.10). 
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Without Shear Keys With Elastic Shear Keys Without Shear Keys With Elastic Shear Keys 

(a) (b) 

Without Shear Keys With Elastic Shear Keys Without Shear Keys With Elastic Shear Keys 

(c) (d) 

Figure 5.9. Deflected shapes of bridges crossing fault-rupture zones associated with the 
“effective” influence vector for excitation in fault-parallel direction: (a) three-span 
symmetric; (b) three-span unsymmetric; (c) four-span symmetric; and (d) four-span 
unsymmetric. 

Without Shear Keys With Elastic Shear Keys Without Shear Keys With Elastic Shear Keys 

(a) (b) 

Without Shear Keys With Elastic Shear Keys Without Shear Keys With Elastic Shear Keys 

(c) (d) 

Figure 5.10. Deflected shapes of bridges on one side of the fault associated with the 
“effective” influence vector for excitation in fault-parallel direction: (a) three-span 
symmetric; (b) three-span unsymmetric; (c) four-span symmetric; and (d) four-span 
unsymmetric. 

Tables 5.1 to 5.4 list the values of the modal contribution factors for two selected responses 

(drift in bent 2 and displacement at abutment 1) for bridges crossing fault-rupture zones as well 

as bridges on one side of the fault, and fault-parallel ground motion; modes with modal 

contribution factors > 0.05 are also identified with darker shade. These results permit several 

important observations on the type and number of modes that need to be considered for the 

dynamic analysis. 

First, the types of vibration modes excited in bridges crossing fault-rupture zones are 

entirely different from the modes excited in bridges on one side of the fault: for a three-span 

symmetric bridge, predominantly torsional modes are excited in the first cases, whereas only 
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transverse modes are excited in the second case. The modal contribution factors are non-zero 

only for the torsional modes of the bridge crossing a fault (second and sixth modes for the bridge 

without shear keys and third and fifth mode for the bridge with elastic shear keys (see Table 5.1 

and Figure 5.5); and are non-zero only for transverse modes in the case of the bridge on one side 

of the fault (first and fifth modes for the bridge without shear keys and first and sixth modes for 

bridge with elastic shear keys (see Table 5.1 and Figure 5.5). For the other three bridges, the 

modal contribution is largest for predominantly torsional modes in the case of bridges crossing 

faults and for predominantly transverse modes in the case of bridges on one side of the fault 

(Tables 5.2 to 5.4), indicating that the contribution of such modes would be largest.  

Second, many more modes may be required to accurately estimate the seismic demands in 

bridges with elastic shear keys compared to those without shear keys and in unsymmetric bridges 

compared to symmetric bridges. For example, the modal contribution factor for the three-span 

symmetric bridge crossing a fault is significant only for one mode in the case of a bridge without 

shear keys but for two modes for bridge with elastic shear keys (Table 5.1). For the three-span 

unsymmetric bridge crossing a fault, it is significant for three modes of the bridge without shear 

keys (Table 5.2) compared to only one mode if the bridge has no shear keys (Table 5.1). Similar 

trends are observed for the four-span bridges (Tables 5.3 and 5.4). 

Third, the number and types of modes to be included in dynamic analysis may depend on the 

seismic demand being evaluated. For example, the first and second modes may be sufficient to 

estimate the deck displacement at abutment 1 of the three-span unsymmetric bridge without 

shear keys crossing a fault, whereas four modes – first, second, fifth, and sixth – may be 

necessary to estimate the drift in bent 2 (Table 5.2). 

Finally, the modal contribution factors may be larger than 1.0 for some modes and negative 

for other modes (Table 5.2); opposing algebraic signs indicate cancellation of modal responses.  
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Table 5.1. Modal combination factors for three-span symmetric bridge and a strike-slip 
fault. Results are presented for bridge with fault crossing between bent 2 and bent 3, and 
bridge on one side of fault. 

Mode Bridge without Shear Keys Bridge With Shear Keys 
Period 
(sec) 

Across Fault One Side Period 
(sec) 

Across Fault One Side 
Bent 2 
Drift 

Abut 1 
Disp. 

Bent 2 
Drift 

Abut 1 
Disp. 

Bent 2 
Drift 

Abut 1 
Disp. 

Bent 2 
Drift 

Abut 1 
Disp. 

1 0.960 0 0 0.863 0.728 0 0 0.689 
2 0.762 0.992 0  0  0.382  0  0 0  0  
3 0.382 0 0 0 0 0.350 0.602 0 0 
4 0.325 0 0 0 0 0.325 0 0 0 0 
5 0.315 0 0 0.155 0.281 0.396 0 0 
6 0.297 0.005 0.008 0 0 0.276 0 0 0.301 
7 0.268 0 0 0 0 0.268 0 0 0 0 
8 0.196 0 0 0 0 0.196 0 0 0 0 
9 0.184 0 0 0.005 -0.010 0.170 0 0 -0.004 0.030 

10 0.158 0 0 0.007 -0.008 0.152 0 0 0.007 -0.020 

Table 5.2. Modal combination factors for three-span unsymmetric bridge and a strike-slip 
fault. Results are presented for bridge with fault crossing between bent 2 and bent 3, and 
bridge on one side of fault. 

Bridge without Shear Keys Bridge With Shear Keys 
Across Fault One Side Across Fault One Side 

Mode 
Period 
(sec) Bent 2 

Drift 
Abut 1 
Disp. 

Bent 2 
Drift 

Abut 1 
Disp. 

Period 
(sec) Bent 2 

Drift 
Abut 1 
Disp. 

Bent 2 
Drift 

Abut 1 
Disp. 

1 0.900 0.837 0.649 0.098 0.046 0.843 
2 0.588 1.394 -0.027 -0.055 0.349 0 0 0 0 
3 0.349 0 0 0 0 0.307 -0.160 
4 0.293 0 0 0 0 0.293 0 0 0 0 
5 0.291 -0.063 -0.026 0.146 0.275 0.149 
6 0.208 0.053 0.024 0.046 0.081 0.206 0 0 0 0 
7 0.206 0 0 0 0 0.199 0.159 
8 0.142 0 -0.002 0 0.001 0.140 -0.002 -0.008 0 0.003 
9 0.128 0.001 0.007 0 -0.009 0.119 0.006 0.028 0.001 0.007 

10 0.096 0 0 0 0 0.096 0 0.002 0 -0.001 
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-0.401 -0.167 0.914 39.30 -0.363 0.839
1.384 -25.73

-17.64
3.860 -0.093 0.145

 

 
  

   

-4.344 -0.799 0.791 -6.871 -0.673 0.840
5.534 1.809 0.067 7.387

-0.332 -0.114 0.076
-0.466

0.129 0.064 0.050 0.447 0.062 0.102

0.578

 

Table 5.3. Modal combination factors for four-span symmetric bridge and a strike-slip 
fault. Results are presented for bridge with fault crossing between bent 2 and bent 3, and 
bridge on one side of fault. 

Mode Bridge without Shear Keys Bridge With Shear Keys 
Period 
(sec) 

Across Fault SU Period 
(sec) 

Across Fault One Side 
Bent 2 
Drift 

Abut 1 
Disp. 

Bent 2 
Drift 

Abut 1 
Disp. 

Bent 2 
Drift 

Abut 1 
Disp. 

Bent 2 
Drift 

Abut 1 
Disp. 

1 0.910 0.841 0.756 0.655 
2 0.699 1.102 0 0 0.422 0.796 0 0 
3 0.366 0 0 0 0 0.366 0 0 0 0 
4 0.354 0 0 0.038 0.202 0.308  0  0 0  0  
5 0.316 0.042 0.056 0  0  0.295  0  0 0  0  
6 0.308 0 0 0 0 0.282 0.661 0 0 
7 0.295 0 0 0 0 0.274 0.294 
8 0.259 0.018 -0.006 0.035 -0.033 0.236 0 -0.036 0.001 0.091 
9 0.227 0 0 0 0 0.227 0 0 0 0 

10 0.189 -0.011 -0.003 0.013 -0.01 0.187 1.497 -0.013 0.015 -0.041 

Table 5.4. Modal combination factors for four-span unsymmetric bridge and a strike-slip 
fault. Results are presented for bridge with fault crossing between bent 2 and bent 3, and 
bridge on one side of fault. 

Mode Bridge without Shear Keys Bridge With Shear Keys 
Period 
(sec) 

Across Fault SU Period 
(sec) 

Across Fault One Side 
Bent 2 
Drift 

Abut 1 
Disp. 

Bent 2 
Drift 

Abut 1 
Disp. 

Bent 2 
Drift 

Abut 1 
Disp. 

Bent 2 
Drift 

Abut 1 
Disp. 

1 0.839 0.691 0.660 0.797 
2 0.556 0.104 0.347 1.299 0.020 0.033 
3 0.327 0 0 0 0 0.327 0 0 0 0 
4 0.307 0.124 0.286  0  0 0  0  
5 0.286 0 0 0 0 0.278 0.102 0.017 -0.036 
6 0.209 0 0 0 0 0.209 0 0 0 0 
7 0.204 0.118 0.191 0.138 
8 0.194 0.019 0.005 0.019 -0.022 0.179 0.074 -0.024 0.022 0.069 
9 0.161 0.031 0.034 -0.003 -0.015 0.155 0.229 0 -0.002 

10 0.115 0 0 0 0 0.115 0.002 0.001 0 0 

5.5 Accuracy of Proposed Procedures 

The procedures presented to estimate the peak response are based on two approximations: (1) 

superposing the peak values of quasi-static and dynamic responses (Equation 5.16); and (2) 

estimating the peak dynamic response by the RSA or the linear static analysis procedure. In this 

section, the combined errors due to both approximations are investigated by comparing the peak 

values of the responses determined by approximate procedures and by RHA (Equation 5.14), the 
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“exact” procedure. For this purpose, presented are the transverse responses of bridges due to 

fault-parallel motions resulting from a rupture on a vertical strike-slip fault (Figures 5.11 and 

5.12), and the longitudinal responses due to fault-normal motions resulting from a rupture on a 

fault with dip of 40° and rake of 110° (Figures 5.13 and 5.14). Note that for the selected bridges 

and orientation of the fault, fault-parallel ground motions cause response only in the transverse 

direction of the bridge and fault-normal motions lead to response only in the longitudinal 

direction of the bridge. Also included are results from the RSA procedure considering 

contribution of only the dominant mode, the mode with the largest modal contribution factor; 

these results are denoted as RSA:1-Mode. 

The presented results show that both versions of RSA lead to estimates of seismic demands 

that are very close to those from the “exact” RHA procedure, indicating that the most-dominant 

mode contributes essentially all of the dynamic response of the selected systems.  

The presented results also show that the linear static analysis procedure that avoids dynamic 

analysis also provides a reasonably good estimate of the seismic demand, which is slightly 

conservative in most cases. Such an overestimation is expected because the simplified procedure 

is based on an upper bound estimate of the pseudo-acceleration = 2.5u��go . However, it 

underestimates the seismic demand slightly in a few cases, e.g., bent 2 drift for bridges 3 and 7 

(Figure 5.13a) because these bridges have two nearly most-dominant modes and contribution of 

these two modes to some seismic demands tend to cancel out.  
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Figure 5.11. Comparison of transverse deck displacement at abutments determined by 
three proposed procedures – RSA, RSA:1-Mode, and linear static analysis (LSA) – with 
those from the “exact” RHA procedure. Results are for fault-parallel ground motions 
associated with a vertical strike-slip fault. 
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Figure 5.12. Comparison of transverse column drifts determined by the three proposed 
procedures – RSA, RSA:1-Mode, and linear static analysis (LSA) – with those from the 
“exact” RHA procedure. Results are for fault-parallel ground motions associated with a 
vertical strike-slip fault. 
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Figure 5.13. Comparison of longitudinal deck displacement at abutments determined by 
the three proposed procedures – RSA, RSA:1-Mode, and linear static analysis (LSA) – with 
those from the “exact” RHA procedure. Results are for fault-normal ground motions 
associated with a fault with dip of 40° and rake of 110°. 
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Figure 5.14. Comparison of longitudinal column drifts determined by the three proposed 
procedures – RSA, RSA:1-Mode, and linear static analysis (LSA) – with those from the 
“exact” RHA procedure. Results are for fault-normal ground motions associated with a 
fault with dip of 40° and rake of 110°. 
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6. NONLINEAR ANALYSIS 


6.1 Introduction 

Chapter 5 presented development of a response spectrum analysis (RSA) procedure and a linear 

static analysis procedure for estimating dynamic part of seismic demands in linearly-elastic 

bridges crossing fault-rupture zones and demonstrated that both these procedures, when 

combined with the quasi-static demands due to ground offset across the fault, provide estimates 

of peak responses that are close to the “exact” results from RHA. However, bridges crossing 

fault-rupture zones are expected to be deformed beyond their linear elastic range. Therefore, the 

objective of the investigation reported in this Chapter is to extend the aforementioned procedures 

to estimate seismic demands for “ordinary” bridges deforming into their inelastic range.  

Presented first is the theoretical background followed by development of three approximate 

procedures for analysis of nonlinear bridges crossing fault-rupture zones. Subsequently, accuracy 

of these procedures is evaluated. 

6.2 Superposing Quasi-static and Dynamic Parts of Response 

 Inelastic response analysis of bridges subjected to multiple-support excitation requires a step-by
tstep solution of equations governing the total displacements u of the bridge for ground motions 

directly imposed on the support degrees of freedom of the system. This procedure, denoted as 

“exact” nonlinear RHA, is too onerous for estimating seismic demands for “ordinary” bridges. 

With the objective of developing practical procedures, we explore whether an approximate 

solution based on superposition of the peak values of the quasi-static and dynamic part of the 

response [Equation (5.16)] provides acceptable estimates for the inelastic seismic demands for 
sbridges. The peak values of quasi-static and dynamic responses, uo and uo , are computed by 

stwo independent nonlinear analyses of the bridge: (1) uo  is determined by nonlinear static 

analysis of the bridge subjected to peak values of ground displacements, α u , simultaneously l go  

applied at all supports; and (2) uo  is determined by nonlinear dynamic analysis, i.e., solving the 

equations of motion: 

mu + cu + f � (u,u � ) = −mι u t�� ( )  �� s eff g  (6.1) 
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The peak values of seismic demands obtained by this approximate superposition procedure 

are compared against those from “exact” nonlinear RHA in Figures 6.1 and 6.2 for eight selected 

bridges. The presented results indicate that this approximate procedure generally leads to a 

conservative – but not excessively conservative – estimate of deck displacements at abutments 

(Figure 6.1) and column drifts (Figure 6.2). Exceptions occur for column drift in bent 2 of 

bridges 5 and 7 where the superposition leads to slightly smaller estimate (Figure 6.2a). 

The preceding results indicate that, although superposition of peak quasi-static and dynamic 

responses determined by two independent nonlinear analyses is not “strictly” valid, this approach 

provides estimates of seismic demands that are accurate to a useful degree. This is the approach 

adopted to develop a practical procedure for estimating inelastic seismic demands for bridges. 
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Figure 6.1. Comparison of transverse deck displacements at abutments determined by two 
analyses: “exact” nonlinear RHA (NL-RHA) and superposition of peak values of nonlinear 
quasi-static and nonlinear dynamic response. Results are for fault-parallel ground motions 
associated with a strike-slip fault. 
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Figure 6.2. Comparison of transverse column drifts determined by two analyses: “exact” 
nonlinear RHA (NL-RHA) and superposition of peak values of nonlinear quasi-static and 
nonlinear dynamic response. Results are for fault-parallel ground motions associated with 
a strike-slip fault. 
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6.2.1 Is Quasi-Static Solution Adequate? 

Because the displacement offset associated with fault rupture dominates the earthquake 

excitation, can the structural response be approximated by the quasi-static solution alone? To 

address this question, the peak values of the total response are presented in Figures 6.3 and 6.4, 

together with the peak values of the quasi-static and dynamic parts of the response. These results 

indicate that the peak values of the total deck displacement at bridge abutments may be estimated 

from nonlinear quasi-static analysis alone (Figure 6.3); however, the quasi-static response alone 

is inadequate in estimating column drifts in bridges without shear keys (see bridges 1, 3, 5, and 7 

in Figure 6.4a; bridges 1 and 3 in Figure 6.4b; and bridges 5 and 7 in Figure 6.4c). 
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Figure 6.3. Comparison of transverse deck displacements at abutments determined by 
three analyses: nonlinear RHA (NL-RHA), nonlinear quasi-static (NQS), and nonlinear 
dynamic (NDYN). Results are for fault-parallel ground motions associated with a strike-
slip fault. 
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Figure 6.4. Comparison of transverse column drifts determined by three analyses: 
nonlinear RHA (NL-RHA), nonlinear quasi-static (NQS), and nonlinear dynamic (NDYN). 
Results are for fault-parallel ground motions associated with a strike-slip fault. 
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6.3 Estimation of Peak Response 

Approximate procedures proposed herein are based on superposing quasi-static and the dynamic 

parts of the response, an approach demonstrated to be appropriate in a preceding section. Thus, 

the peak value of the total response is estimated by  

t = rs 
+ (6.2)r o g  + ro 

rs 
+where o g  is the peak value of the quasi-static part of the response (including the effects of 

gravity loads) and ro  is the peak value of the dynamic part of the response. 

In all three approximate procedures, the peak value of the quasi-static part of the response 
sincluding the effects of gravity loads, ro g+ , is computed by nonlinear static analysis of the bridge 

due to ground displacements, α u , applied simultaneously at all supports, where u  is thel go go 

peak value of the ground displacement at the reference support. Gravity loads are applied prior to 

the static analysis and the part of the response, rg , due to gravity loads is noted. 

Presented next are three procedures to estimate the peak value of the dynamic part of the 

response: modal pushover analysis, linear dynamic analysis, and linear static analysis\. 

6.3.1 Modal Pushover Analysis (MPA ) 

The MPA procedure developed earlier for estimating seismic demands for buildings (e.g., 

Chopra, 2007: Section 19.7.3) is adapted for bridges crossing fault-rupture zones. The MPA 

procedure is specialized only for the most-dominant mode because, as demonstrated in Chapter 

5, only this mode is generally sufficient to accurately estimate the response of many bridges. The 

procedure is summarized next in step-by-step form: 

1. Compute the vibration periods, T , and mode shapes, φ , of the bridge.n n

2. Identify the most-dominant mode that needs to be considered in the dynamic analysis based on 

the modal contribution factors of the linearly-elastic bridge as follows: 

2.1 Compute the “effective” influence vector, ιeff , as the vector of displacements in the 

structural DOF obtained by linear static analysis of the bridge due to support 

displacements αl  applied simultaneously as demonstrated in Chapter 5; this 
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“effective” influence vector has no resemblance to the one for spatially-uniform 

excitation. 
st2.2 Compute the response, 	r , by static analysis of the bridge due to forces equal to 

mιeff applied at the structural DOF. 

st2.3 Compute the modal static response, 	rn , by static analysis of the bridge due to forces 

Tsn = Γnmφn applied at the structural DOF, where Γ =n φn 
Tmιeff φ mφ .n	 n 

st st 2.4 Compute the modal contribution factor for the nth mode, r = r r	 (Chopra 2007:n	 n 

Section 12.10). 

2.5 Repeat steps 2.3 and 2.4 for all modes.  

2.6 Select the most-dominant mode as the mode with the largest modal contribution 

factor. 

3. Compute the peak value of dynamic response, rno , in the most-dominant mode of the bridge 

by nonlinear static (or pushover) analysis as follows: 

*
3.1 Develop the pushover curve, βn − urn  , for the modal force distribution, n βn φn ,f =  m

in which βn  is the force-scale factor, and urn  is the displacement of the bridge at a 

reference point. Gravity loads are applied before pushover analysis and P-Δ effects 

are included. Note the value of the reference point displacement due to gravity loads, 

.urg 

3.2 Convert the βn − urn   pushover curve to the force-displacement, Fsn L − D ,n n 

relation for the inelastic SDF system by utilizing F L = β Γn	 andsn n n 

D = u Γnφrn  in which φrn  is the value of φn  at the reference point; these relations n 	  rn  

are developed in Appendix C. 

3.3 Idealize the pushover curve, as necessary, and define appropriate hysteretic rules for 

cyclic deformations. 

3.4 Compute the peak deformation Dn  of the inelastic SDF system defined by the force

deformation relation developed in Step 3.3 and damping ratio ζ n, subjected to the 

ground acceleration u t��g ( ) at the reference support. 

3.5 Calculate the peak value of the reference-point displacement urn  from u = Γ φ D .rn n rn n 
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3.6 At the reference point displacement equal to urg + urn , note the value rn g+  of desired 

response from the pushover data. 

4. The peak dynamic response is, 	ro = rn+g − rg , where rg  is the contribution of gravity loads 

alone, computed earlier. 

Note that the most-dominant mode to be considered in the dynamic analysis may depend on 

the response quantity under consideration, e.g., most-dominant mode for computation of the 

dynamic part of the drift at one bent may differ from that for another bent (see Appendix D). 

Therefore, the MPA procedure must be implemented for each mode that is identified to be the 

most-dominant mode for a seismic response of interest, implying the need for several such 

analyses. For bridges considered in this investigation, however, it was found that generally the 

same mode was the most-dominant mode for all seismic responses (see modal contribution 

factors in Tables 5.1 to 5.4), requiring a single implementation of the MPA procedure. Only in 

very few cases (such as the example bridge in Appendix D) did the most-dominant mode differ 

for different seismic responses. Even for such cases, implementation of the MPA procedure was 

needed for no more that two different modes. 

Pushover Curve and Reference-Point Displacement 

Figure 6.5 presents the pushover curves for the most-dominant mode − the one for drift bent 2 − 

of the eight selected bridges, together with the peak value of the transverse displacement at 

abutment 1, chosen as the reference displacement. Bridges with elastic shear keys, e.g., bridges 

2, 4, 6, and 8, remain within the linear-elastic range during the dynamic part of the response 

(Figure 6.5) because the peak displacement is very small (Figures 6.3 and 6.4). Bridges without 

shear keys, e.g., bridges 1, 3, 5, and 7, on the other hand, are deformed beyond the elastic limit, 

but only slightly (Figure 6.5). 

These results suggest that linear analysis may be adequate to estimate the dynamic part of 

the response of these bridges. To evaluate this approximation, the peak reference displacements 

determined by nonlinear and linear analyses are compared in Figure 6.6 for bridges without shear 

keys. This comparison shows that linear analysis underestimates slightly the reference 

displacement for bridges 1, 3, and 5 but provides an excellent estimate for bridge 7; however, the 

slight underestimation of the peak displacement appears to be well within the errors acceptable 
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for most practical applications. For practical implementation of linear analysis of the dynamic 

part of the response, two simple procedures are presented next. 
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Figure 6.5. Pushover curve and peak reference displacement for the most-dominant mode 
of the selected bridges. 
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Figure 6.6. Comparison of the reference displacement for the most-dominant mode from 
nonlinear and linear analyses. 
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6.3.2 Linear Dynamic Analysis 

The peak modal response of a structure due to one mode – the most dominant mode – can be 

determined by analysis of the bridge due to equivalent static forces (see Chopra, 2007: Section 

13.1) 

f = s Α = Γ mφ A (6.3)n  n n  n n n

in which Γ  was defined in Step 2.3 of the MPA procedure, and A  is determined from the n n

pseudo-acceleration spectrum for the reference support acceleration u t( ) . As demonstrated ��g

previously, this spectrum differs significantly from the CALTRANS SDC spectrum (see Figure 

3.9). The linear dynamic analysis procedure is equivalent to the RSA procedure in Chapter 5 but 

specialized to consider only one mode – the most dominant mode. 

The peak value, r , of the dynamic part of the response can be computed as follows: o

1. Compute the vibration periods, T , and mode shapes, φ , of the bridge.n n

2. Compute the “effective” influence vector, ιeff , as the vector of displacements in the structural 

DOF obtained by linear static analysis of the bridge due to support displacements αl applied 

simultaneously in the appropriate direction: fault parallel or normal fault. 

3. Identify the most-dominant mode by implementing Step 2.2 of the MPA procedure presented 
Tearlier and compute Γ =n φn 

Tmιeff φ mφ .n n 

4. Estimate ro  by linear analysis of the bridge due to equivalent static forces s = Γnmφn nA .n 

6.3.3 Linear Static Analysis 

As demonstrated in Chapter 5, the peak value of the dynamic part of the response of linearly 

elastic bridges can be estimated to a sufficient accuracy simply by static analysis of the structure 

due to lateral forces = 2.5mιeff u��go ; computation of vibration periods and modes is no longer 

necessary. The same procedure is adopted for inelastic bridges because, as demonstrated earlier, 

the dynamic part of their response may be estimated by linear analysis. Thus, the peak value ro

of the dynamic part of the response can be computed as follows:  

1. Compute the effective influence vector, ιeff , as the vector of displacements in the structural 
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DOF obtained by linear static analysis of the bridge due to support displacements αl  applied 

simultaneously. 

2. Estimate ro  by linear static analysis of the bridge due to lateral forces = 2.5mιeff u��go . 

6.4 Accuracy of Approximate Procedures 

The total (quasi-static plus dynamic) seismic demands for bridges oriented orthogonal to strike

slip faults due to fault-parallel ground motions estimated by the three approximate procedures 

are compared against results of “exact” nonlinear RHA. Recall that the three procedures are 

identical in their computation of the quasi-static response but differ in estimation of the dynamic 

response. The results presented in Figures 6.7 and 6.8 lead to the following observations: 

First, the MPA procedure leads to estimates of deck displacements at abutments and column 

drifts that are generally slightly conservative but with some exceptions: column drift in bent 2 of 

bridges 5 and 7 is underestimated (Figure 6.8a). Second, the simpler linear dynamic analysis 

procedure is generally no less accurate than the computationally more demanding MPA 

procedure. Third, the linear static procedure, which is the simplest of the three approximate 

procedures, provides conservative, but not excessively conservative, estimates of deck 

displacements at abutments (Figure 6.7) and good estimates of column drifts (Figure 6.8). 

Although it underestimates the drift in bent 2 of bridges 3, 5, and 7 (Figure 6.8a), this 

underestimation is not much worse than in the MPA procedure. Therefore, linear static analysis 

is preferable over linear dynamic analysis or MPA for practical applications to “ordinary” 

bridges. 
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Figure 6.7. Transverse deck displacement at abutment determined by three approximate 
procedures − MPA, linear dynamic analysis (LDA), and linear static analysis (LSA) − and 
“exact” nonlinear RHA (NL-RHA). Results are for fault-parallel ground motions 
associated with a vertical strike-slip fault. 
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Figure 6.8. Transverse column drifts at abutment determined by three approximate 
procedures − MPA, linear dynamic analysis (LDA), and linear static analysis (LSA) − and 
“exact” nonlinear RHA (NL-RHA). Results are for fault-parallel ground motions 
associated with a vertical strike-slip fault. 
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Figure 6.9. Longitudinal deck displacement at abutment determined by three approximate 
procedures − MPA, linear dynamic analysis (LDA), and linear static analysis (LSA) − and “exact” 
nonlinear RHA (NL-RHA). Results are for fault-normal ground motions associated with a fault 
with dip of 40° and rake of 110°. 

The results presented in Figures 6.9 and 6.10 for fault-normal motions on a fault with dip of 

40° and rake of 110° indicate that all three procedures – MPA, linear dynamic analysis, and 

linear static analysis – provide estimates that are essentially identical, and are very close to those 

from the “exact” nonlinear RHA. Thus, as before, the simpler linear static analysis is preferable 

over linear dynamic analysis or MPA for practical applications. In passing, observe that the 

longitudinal response of a bridge oriented orthogonal to the fault is not affected by shear keys 

(compare bridges 1 and 2, 3 and 4, 5 and 6, and 7 and 8 in Figures 6.9 and 6.10), because they 

provide restraint only in the transverse direction. 
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Figure 6.10. Longitudinal column drifts at abutment determined by three approximate 
procedures − MPA, linear dynamic analysis (LDA), and linear static analysis (LSA) − and 
“exact” nonlinear RHA (NL-RHA). Results are for fault-normal ground motions associated 
with a fault with dip of 40° and rake of 110°. 

6.5 Application to Bridges with Nonlinear Shear Keys 

Chapter 4 demonstrated that the earthquake response of bridges crossing fault-rupture zones is 

very sensitive to the strength of the shear keys. Computations of this response were shown to be 

unreliable for lack of experimental data and realistic nonlinear force-deformation models for 

shear keys. For this reason, it was proposed to estimate bridge response as the larger of responses 

computed by nonlinear analysis of the bridge for two shear key cases: no shear keys and elastic 

shear keys. Therefore, this upper bound of response is selected as the benchmark to evaluate 

approximate procedures presented in this investigation.  

Figures 6.11 to 6.14 present the upper bound response of the four bridges considered in this 

investigation: three-span symmetric (3S), three-span unsymmetric (3U), four-span symmetric 

(4S), and four-span unsymmetric (4U) determined by the three approximate procedures – MPA, 

linear dynamic analysis, and linear static analysis – and nonlinear RHA. Included are results for 

transverse response due to fault-parallel ground motions on a strike-slip fault (Figures 6.11 and 

6.12) and for longitudinal response due to fault-normal motions on a fault with a dip of 40° and 

rake of 110° (Figures 6.13 and 6.14). 

The MPA procedure provides a conservative estimate of deck displacements at abutments. 

They are within about 10% of the result from nonlinear RHA for a few cases (bridges 3U and 4S 

in Figure 6.11a). For most of the remaining cases, the results from the MPA procedure are within 

about 30% of the estimate from nonlinear RHA (see bridge 3S and 3U in Figure 6.11a; bridges 

3S and 4U in Figure 6.11b). The apparently much larger percentage discrepancy (bridge 4U in 
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Figure 6.11a) is inconsequential as the response under consideration is very small. The MPA 

procedure provides estimates of column drifts that are generally very close to the exact results 

(Figure 6.12), within about 5% for most cases (bridges 3S, 3U, and 4S in Figure 6.12a; bridges 

3S, 3U, and 4U in Figure 12b; bridges 4S and 4U in Figure 6.12c), within 10% for one case 

(bridge 4S in Figure 6.12b), and about 30% for another case (bridge 4U in Figure 6.12a). While 

the MPA overestimated the deck displacements at abutments, it slightly underestimated the 

column drifts for a few cases (bridges 3S and 4U in Figure 6.12a; bridge 3S in Figure 6.12b; 

bridge 4U in Figure 6.12c). 
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Figure 6.11. Upper bound of transverse deck displacement at abutment determined by 
three approximate procedures − MPA, linear dynamic analysis (LDA), and linear static 
analysis (LSA) − and “exact” nonlinear RHA (NL-RHA). Results are for fault-parallel 
ground motions associated with a vertical strike-slip fault. 

(a) Bent 2 (b) Bent 3 (c) Bent 4 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

C
ol

um
n 

D
rif

t, 
m

 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0 

0.1 

0.2 

0.3 

0.4 

0.5 
NL−RHA 
MPA 
LDA 
LSA 

3S 3U 4S 4U 3S 3U 4S 4U 3S 3U 4S 4U 
Bridge No. Bridge No. Bridge No. 

Figure 6.12. Upper bound of transverse column drifts at abutment determined by three 
approximate procedures − MPA, linear dynamic analysis (LDA), and linear static analysis 
(LSA) − and “exact” nonlinear RHA (NL-RHA). Results are for fault-parallel ground 
motions associated with a vertical strike-slip fault. 
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The linear dynamic analysis and linear static analysis procedures also provide conservative 

estimates of deck displacements at abutments (Figure 6.11a), but these procedures are generally 

slightly less conservative compared to the MPA procedure. The exception occurs for bridge 3U 

for which the linear static analysis procedure provides slightly more conservative estimate of 

deck displacements at abutments (Figure 6.11). The columns drifts estimated by linear dynamic 

analysis and linear static analysis procedures are generally very similar to those from the MPA 

procedure (Figure 6.12). 

The results presented in Figures 6.13 and 6.14 for longitudinal response due to fault-normal 

motions on a fault with a dip of 40° and rake of 110° indicate that the three approximate 

procedures – MPA, linear dynamic analysis, and linear static analysis – provide essentially 

identical estimates of deck displacements at abutments and column drifts, which are within about 

5% of the “exact” results. 

The three approximate procedures are much more accurate in estimating the upper bound of 

the response for the two shear-key cases (Figures 6.11 to 6.14) compared to that observed 

previously for the individual cases (see Figures 6.7 to 6.10). The accuracy of the linear static 

analysis procedure is generally no worse, and slightly better for many cases, compared to the 

MPA procedure or the linear dynamic analysis procedure. Therefore, the linear static analysis 

procedure, which is the simplest of the three approximate procedures, is preferable over MPA or 

linear dynamic analysis procedures. 
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Figure 6.13. Upper bound of transverse deck displacement at abutment determined by 
three approximate procedures − MPA, linear dynamic analysis (LDA), and linear static 
analysis (LSA procedures) − and “exact” nonlinear RHA (NL-RHA). Results are for fault-
normal ground motions associated with a fault with dip of 40° and rake of 110°. 
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Figure 6.14. Upper bound of transverse column drifts at abutment determined by three 
approximate procedures − MPA, linear dynamic analysis (LDA), and linear static analysis 
(LSA procedures) − and “exact” nonlinear RHA (NL-RHA). Results are for fault-normal 
ground motions associated with a fault with dip of 40° and rake of 110°. 
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7. COMMENTS ON CURRENT PROCEDURES 


7.1 Procedures based on Fault Rupture Load Cases 

Gloyd et al. (2002) proposed a simple design approach for “ordinary” bridges crossing fault

rupture zones by consider the following two load cases, in addition to the standard CALTRANS 

load cases I-VII: 

Group VII = 1.0 1.0 D + β E + 1.0B + 1.0 SF + 1.0PS + 1.0 EQ +1.0FR (7.1a)FR-1 [ E P ] 

Group VII = [ D + β E + 1.0B + 1.0 SF + 1.0PS +1.0 FR ]FR-2 1.0 1.0 E D (7.1b) 

in which D, E, B, SF, PS, EQ, FRP , and FRD  are demands due dead load, earth pressure, 

buoyancy load, stream-flow load, pre-stress load, earthquake load, probabilistic surface 

displacement (or fault-offset), and deterministic fault-offset, respectively, and βE  is the load 

multiplier for earth pressure. The VIIFR−1  load case involves superposition of demands FRP 

from static analysis of the bridge due to the fault-offset, estimated from probabilistic analysis, in 

the fault-parallel direction and EQ from dynamic analysis of the bridge to motions in the fault

normal direction. The VIIFR−2  load case involves only demand FRD  from static analysis of the 

bridge to the fault-offset, estimated from deterministic analysis, in the fault-parallel direction. 

The demand EQ from dynamic analysis in the VIIFR−1  load case is for ground motions in the 

fault-normal direction associated with the fault rupture. Under the guidance of a Technical 

Advisory Panel, this approach was used by the CALTRANS engineers and project consultants to 

design bridges in the SR210/I-215 interchange in San Bernardino, California. 

In contrast, the structural-dynamics-based development presented in Chapter 5 demonstrates 

that analysis of bridges crossing fault-rupture zones due to an individual component of ground 

motion (fault-parallel or fault-normal) requires superposition of demands from a static analysis 

for fault-offset and a dynamic analysis for spatially-varying ground motion.  

While the procedure proposed by Glyod et al. (2002) considers the static response due to 

fault offset, it either ignores the dynamic response or considers the dynamic response incorrectly. 

For example, the VIIFR-1  load case combines the static response due to fault offset in the fault

parallel direction with the dynamic response due to excitation in the fault-normal direction. 

Obviously, the dynamic part of the response due to ground shaking in the fault-parallel direction 
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is ignored in this load case. The VIIFR-2  load case ignores the dynamic response due to both 

fault-parallel and fault-normal ground motions. 

7.2 A Simplistic Procedure 

Recognizing the difficulty in implementing nonlinear RHA with spatially-varying ground 

motions, practicing engineers have devised a simple two-step procedure for design of bridges 

crossing fault-rupture zones (CALTRANS, 2007). The first step in this procedure estimates the 

displacement demands for the bridge, assumed to be linearly elastic by standard RSA. Implicit in 

this approach is the assumption that the bridge is located on one side of the fault and thus 

subjected to spatially-uniform excitation.. The excitation is characterized either by a site-specific 

spectrum or the CALTRANS SDC spectrum that is modified for near-field effects; the 

magnification factor is zero for T ≤ 0.5sec , 20% for T ≥1sec , and varies linearly over the period 

range 0.5 T 1 sec < <  (CALTRANS, 2006). The second step estimates the displacement capacity 

of the bridge by nonlinear static analysis wherein gravity loads are applied first, followed by 

fault rupture displacements applied at various supports of the bridge. One-half of the fault

rupture displacement is applied to the portion of the bridge on one side of the fault; the other 

one-half is applied in the opposite direction to the portion of the bridge on the other side of the 

fault. The preceding analysis in the second step may be interpreted as equivalent to the quasi

static analysis described in preceding sections. Finally, in the second step, lateral forces 

proportional to the structural mass distribution are applied to the bridge and monotonically 

increased until column plastic hinges reach their capacity and incremental displacement is noted. 

The bridge design is acceptable if the incremental displacement capacity determined by this 

pushover analysis exceeds the seismic displacement demand from RSA in the first step. The last 

step of the procedure suggests that the total seismic demand is estimated by superposition of 

nonlinear quasi-static response due to peak values of support displacements, and linear dynamic 

response of the bridge, assumed to be located one side of the fault, due to spatially-uniform 

support excitation. 

Although combining quasi-static and dynamic responses in the above-described simplistic 

procedure appears to be similar to the superposition approach in the three approximate 

procedures proposed Chapter 6, there are two important discrepancies in computation of the 

dynamic part of the response. The first step of the simplistic procedure assumes the bridge to be 
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located on one side of the fault and thus subjected to spatially-uniform support excitation, which 

bears no resemblance to spatially-varying excitation with fault offset relevant for bridges 

crossing fault-rupture zones. The same assumption is implicit in the final part of the second step 

in the simplistic procedure. The mass-proportional lateral force distribution, which is equivalent 
* to s = mι , used in the pushover analysis of the simplistic procedure,  may be appropriate for 

bridges located on one side of the fault that are subjected to spatially-uniform support excitation, 

but not for bridges crossing fault-rupture zones subjected to spatially-varying support excitation 

with fault offset. For bridges crossing fault-rupture zones, the appropriate force distribution is 
*either that corresponding to the most-dominant mode, i.e., s = mφ , or that considering then n 

distribution of inertia forces on the bridge subjected to spatially-varying support motions with 
*fault offset, i.e., s = mιeff . As demonstrated in Chapter 5, the influence vector, ι , for spatially

uniform support excitation has no resemblance to the effective influence vector, ιeff , for 

spatially-varying excitation with fault offset. 

Second, the response spectrum used in the simplistic procedure is inappropriate for ground 

motions expected in close proximity to faults. This becomes apparent by comparing the 

CALTRANS SDC spectrum with the response spectrum for ground motions in fault-rupture 

zones, all presented in normalized form (see Figure 3.9).  

In contrast, all three approximate procedures, MPA, linear dynamic analysis, and linear 

static analysis, presented in Chapter 6 recognize all the important features of the earthquake 

response of bridges crossing fault-rupture zones: spatial variations including fault offset in the 

support motions, and the characteristics of ground motions expected in close proximity to the 

causative fault. Linear static analysis, the simplest of the three procedures presented here, is 

especially attractive for practical application because it is even simpler than the simplistic 

procedure, and yet provides good estimates of seismic demands, because it is rooted in structural 

dynamics theory. 
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8. CONCLUSIONS 


This investigation on analysis of “ordinary” bridges crossing fault-rupture zones has been 

implemented in three phases: (1) understanding the role of shear keys in seismic behavior, (2) 

development of linear analysis procedures, and (3) development of nonlinear analysis 

procedures. Finally, procedures currently being used by bridge engineers for analysis of 

“ordinary” bridges crossing fault-rupture zones are compared against the procedures developed 

during this investigation. Following are the conclusions and recommendations from this 

investigation. Although accuracy of the analytical procedures proposed in this report are 

demonstrated only for three- and four-span straight bridges perpendicular to the fault, these 

procedures are expected to provide accurate estimates of seismic demands for all bridges in 

general – bridges with larger number of spans, curved bridges, bridges skewed with respect to 

the fault – because the underlying theory used in development of these procedures is independent 

of the number of spans, curvature of the bridge, or orientation of the bridge relative to the fault. 

8.1 Role of Shear Keys 

The first phase of this investigation on how shear keys affect seismic behavior of bridges has led 

to the following conclusions: 

1. 	 The seismic demands for a bridge with nonlinear shear keys (shear keys that break-off and 

cease to provide transverse restraint if deformed beyond a certain limit) can generally be 

bounded by the demand computed for two shear-key cases: elastic shear keys (shear keys that 

do not break-off and continue to provide transverse restraint throughout the ground shaking), 

and no shear keys (transverse restraint due to shear keys is completely ignored). This 

conclusion is valid for bridges subjected to spatially-uniform ground motion as well as 

spatially-varying ground motion expected in fault-rupture zones. 

2. 	 The shear keys may be ignored in estimating an upper bound of seismic demands for a bridge 

subjected to spatially-uniform ground motion.  

3. 	 Estimating upper bound values of seismic demands for a bridge crossing a fault-rupture zone 

requires analysis for two shear-key cases: no shear keys and elastic shear keys. A bridge 

without shear keys generally provides an upper bound estimate of deck displacement at 

abutment, but a bridge with elastic shear keys generally provides an upper bound estimate of 

column drift.  
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4. 	Seismic response of bridges crossing fault-rupture zones may be very sensitive to the 

strength of shear keys indicating that computation of this response, even with nonlinear 

RHA, may be unreliable in the absence of realistic and accurate force-deformation models 

for shear keys. 

Because ignoring transverse restraint due to shear keys may underestimate some seismic 

demands for a bridge crossing fault-rupture zones, it is recommended that such bridges be 

analyzed for both shear-key cases (elastic shear keys and no shear keys) to establish an upper 

bound of seismic demands. Shear keys may be ignored for such bridges only if they can be 

demonstrated to “truly” break-off before initiation of strong shaking expected during the 

maximum design earthquake.  

While explicit consideration of nonlinear force-deformation relationship of shear keys may 

be the most accurate modeling for estimating seismic demands, it presents two complications. 

First, some seismic demands may be underestimated if the shear key happens to be stronger than 

the design strength. Second, nonlinear modeling of shear keys requires that the seismic demands 

be determined by nonlinear RHA of the bridge system. Upper and lower bounds for seismic 

demands can be obtained by analyses of two simpler nonlinear systems: bridge with elastic shear 

keys and bridge without shear keys. 

8.2 Linear Analysis 

The second phase of investigation has led to development of two procedures – response spectrum 

analysis (RSA) procedure and linear static analysis procedure – for estimating peak responses of 

linearly-elastic “ordinary” bridges crossing fault-rupture zones. Although much simpler than 

response history analysis, these procedures provide estimates of peak seismic responses that are 

sufficiently “accurate” for most practical application.  

The presented procedures idealize spatially-varying excitation as a proportional multiple

support excitation in which motions at various supports of the bridge are assumed to be 

proportional to the motion at a reference location. It has been demonstrated that this idealization 

is valid for spatially-varying ground motions in close proximity to faults with various dip and 

rake angles, and provides accurate estimates of peak seismic responses. 

In the presented procedures, the peak value of seismic response of the bridge is computed by 

superposition of peak values of quasi-static and dynamic parts of the response. The peak quasi
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static response is computed by static analysis of the bridge with peak values of all support 

displacements applied simultaneously. Two procedures are presented for estimating the peak 

dynamic response. In the RSA procedure it is estimated directly from the response spectrum 

including all significant modes in the dynamic analysis. The linear static analysis procedure 

avoids computing the vibration periods of the bridge as well as estimating the rise time of the 

fault offset, and estimates the peak dynamic response by a much simpler static analysis of the 

bridge to appropriately selected forces. These procedures utilize the “effective” influence vector 

that differs from that for the spatially uniform excitation. Furthermore, the RSA procedure uses 

the response spectrum for ground motions expected in close proximity to the causative fault. 

The natural vibration modes that are excited in bridges subjected to motions resulting from 

rupture on a fault passing under the bridge differ entirely from those excited in bridges on one 

side of the fault. Therefore, it is important to correctly identify the modes that need to be 

considered in the RSA procedure. For this purpose, the modal contribution factor concept is 

demonstrated to be useful.  

It is shown that both the RSA procedure and the linear static analysis procedure provide 

estimates of peak total response that are very close to the peak response determined by “exact” 

response history analysis. Furthermore, it is shown that only one mode – the most dominant 

mode – is usually sufficient in the RSA Procedure. 

8.3 Nonlinear Analysis 

The last phase of this investigation focused on computation of seismic demands in “ordinary” 

bridges crossing fault-rupture zones and deformed beyond their linear elastic limit. It is shown 

that the seismic demands for such bridges can be estimated to a useful degree of accuracy by 

superposition of the peak values of the quasi-static and dynamic parts of the response. The peak 

value of the quasi-static part of the response, including the effects of gravity loads, is computed 

by nonlinear static analysis of the bridge due to peak ground displacements applied 

simultaneously at all supports. 

Three approximate procedures were presented for estimating the peak value of the dynamic 

part of the response. The linear static analysis procedure, which is simpler than the two other 

procedures, MPA and linear dynamic analysis, is recommended as the procedure for practical 

analysis of “ordinary” bridges. Although the other two are dynamics-based procedures, they 
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consider only the response contribution of the most-dominant mode; at the expense of additional 

computational effort, they can be extended to include higher mode contributions; as in the 

general MPA and RSA procedures, respectively. On the other hand, the linear static analysis 

procedure does not require computation of the vibration periods or modes of the structure, but 

indirectly considers contributions of all vibration modes and requires only a linear static analysis 

of the bridge due to lateral forces that recognize the ground offset across the fault and the shape 

of the response spectrum for fault ground motions in close proximity to the fault. 

8.4 Current Procedures 

It is demonstrated that procedure based on fault-rupture load cases recently used by bridge 

engineers to design bridges in the SR210/I-215 interchange in San Bernardino, California, is 

inappropriate for estimating seismic demands in bridges crossing fault-rupture zones: these 

procedures either ignore the dynamic part of the response or compute it incorrectly. 

It is also demonstrated that the simplistic two-step procedure for design of bridges crossing 

fault-rupture zones is also inappropriate for analysis and design of bridges crossing fault-rupture 

zones. This procedure has two important discrepancies in computation of the dynamic part of the 

response. First, this procedure assumes the bridge to be located on one side of the fault and thus 

subjected to spatially-uniform support excitation, which bears no resemblance to spatially

varying excitation with fault offset relevant for bridges crossing fault-rupture zones. Second, the 

response spectrum used in this procedure is inappropriate for ground motions expected in close 

proximity to faults. 

Finally, it is demonstrated that the mass-proportional lateral force distribution used in the 

pushover analysis of the simplistic procedure may not be for bridges crossing fault-rupture 

zones. For bridges crossing fault-rupture zones, the appropriate force distribution is either that 

corresponding to the most-dominant mode or that considering the distribution of inertia forces on 

the bridge subjected to spatially-varying support motions with fault offset.  

In contrast, all three approximate procedures, MPA, linear dynamic analysis, and linear 

static analysis, developed in this investigation recognize all the important features of the 

earthquake response of bridges crossing fault-rupture zones: spatial variations including fault 

offset in the support motions, and the characteristics of ground motions expected in close 

proximity to the causative fault. Linear static analysis, the simplest of the three procedures 
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presented here, is especially attractive for practical application because it is even simpler than the 

simplistic procedure, and yet provides good estimates of seismic demands, because it is rooted in 

structural dynamics theory. 
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APPENDIX A. GROUND MOTIONS FOR OTHER EARTHQUAKE MAGNITUDES 

This appendix describes a simplified procedure to generate fault-parallel ground motions for 

earthquakes with different magnitudes on a strike-slip fault. Such ground motions are utilized 

later to show that the normalized response spectrum for fault-parallel motions in the fault-rupture 

zone is independent of the earthquake magnitude, given the assumption of linear elasticity used 

to generate the motions. Although, such ground motions could be generated by seismological 

simulations similar to the one that led to motions described earlier for earthquake events in fault

rupture zone with different magnitudes, these simulations require considerable computational 

effort. A simpler approach is to utilize the relationships of earthquake magnitude, M , with risew 

time, TR , and the total fault-offset, ugo , for motion in the fault-parallel direction (Somerville et 

al, 1999), 

0.5( M w −6.69 )TR =10 (A1a) 

0.5( M w −2.91 )ugo =10 (A1b) 

to scale the ground displacements generated previously for a magnitude 6.5 earthquake to obtain 

the ground displacement for other magnitude earthquakes. For this purpose, the time scale is 

multiplied by the ratio T MR ( w ) T M  = 6.5)( w , and the displacement scale is multiplied by the R 

ratio u ( M ) u ( M = 6.5) . Such scaling is appropriate for fault-parallel motions, the go w go w 

motions of interest, in fault rupture zone but not for fault-normal motions (Dreger, 2007: 

Personal Communication).  

Equation A1 indicates that the average rise-time as well as the fault-offset would increase 

with increasing earthquake magnitude, which is verified by the results of Figure A1. The effects 

of earthquake magnitude (and hence rise-time) on the ground motions are presented in Figure 

A2. As expected, the ground displacement is a step function and the displacement-offset at the 

reference location, which is selected as one-half of the average fault-offset, increases with 

earthquake magnitude and rise-time (Figure A2a). The ground velocity is characterized by a 

single-sided pulse of increasing duration with increasing earthquake magnitude. However, the 

peak ground velocity remains essentially independent of the earthquake magnitude (Figure A2b). 

This is the case because of the assumption of constant stress drop, which yields a constant slip 
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velocity (Dreger, 2007: Personal communication, Feb, 21). This also occurs due to use of self

similar restrained empirical relationship of Somerville et al. (1999). The ground acceleration, 

which is characterized by a double-sided pulse, increases in duration but decreases in magnitude 

with increasing earthquake magnitude (Figure A2c). This is a direct result of the ground velocity 

with same peak value but increasing duration with increasing earthquake magnitude. 

Note that the stress drop in actual earthquake events may vary somewhat from the constant 

value assumed in this investigation. As a result, time variation of ground velocity and 

accelerations may differ from those in Figure A2. However, the ground motions of Figure A2 are 

sufficient for the limited purpose of demonstrating the relative importance of quasi-static and 

dynamic responses in this investigation.  
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Figure A1. Variation of (a) ground displacement rise time and (b) fault-offset with 
earthquake magnitude for fault-parallel motions on a strike-slip fault. 

(a) (b)	 (c) 
1.2 0.8 0.4 6

6= 7.5 
w

7 
M 

w
 = 7.57 

6.5 

0 1 2 3 4 5 

6.5 

6 

0 1 2 3 4 5 

0.6 0.2 

u 
, m 0.6 0.4 0g 

0.2 −0.2 

0 −0.4 

Time, sec Time, sec	 Time, sec 

Figure A2. Effects of earthquake magnitude on ground motions: (a) ground displacement; 
(b) ground velocity; and (c) ground acceleration for fault-parallel motions on a strike-slip 
fault. 
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Figure A3a presents 5%-damped elastic response spectra for the ground motions of Figure 

A2. These results indicate lower peak ground accelerations, i.e., spectral acceleration at zero

period, for higher magnitude earthquake in fault-rupture zone even though the ground offset 

becomes larger for higher magnitude earthquakes (Figure A2). As explained previously, this 

occurs due to the assumption of constant stress drop in generating the ground motions, which the 

justification for restraining relationships in Equation A1 to follow self-similarity. Furthermore, 

higher spectral accelerations occur at short periods for low-magnitude earthquakes and at long 

periods for high-magnitude earthquakes. The peak in the spectral acceleration appears to occur at 

the period equal to rise-time of the ground displacement.  

Figure A3b presents the normalized response spectrum: the vibration period, T , isn

normalized with the rise-time of the ground displacement, T , and the pseudo-acceleration A (orr

spectral acceleration), is normalized with the peak ground acceleration, u��go . These results 

indicate that the normalized average response spectrum becomes independent of the earthquake 

magnitude, as apparent from identical spectra for all magnitudes; the slight differences apparent 

in the response spectra are purely due to numerical errors in the computation procedure. As 

expected, the peak in the normalized spectrum occurs at Tn = Tr , and A ugo approaches one at/ ��

zero period. 

The above noted trends in the ground motions and response spectra are for motions 

generated with constant stress drop. Furthermore, the scaling of ground motions with earthquake 

magnitude is for average values of fault offset and rise-time. These trends may differ slightly for 

earthquake ground motions generated for variable stress drop as well as more accurate modeling 

for fault offset and rise-time.  
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APPENDIX B. SHEAR-KEY MODELING 


Presented in this appendix is the procedure used in this investigation to develop force

deformation behavior of external shear keys. For this purpose, the experimental work and the 

shear-key failure mechanisms reported elsewhere (Bozorgzadeh et al., 2003, 2006; Megally et al, 

2001) have been utilized. Presented first is the procedure to evaluate the shear-key strength 

followed by the force-deformation relationship. 

B.1 STRENGTH OF SHEAR KEYS 

Two failure mechanisms of external shear keys that are typically used by CALTRANS (Figure 

B1a) have been reported (see Bozorgzadeh et al., 2006 for details and other references): (1) 

sliding shear mechanism in which a single horizontal crack develops at the interface of the shear 

key and abutment stem wall; and (2) diagonal tension mechanism in which multiple diagonal 

cracks develop in the abutment stem wall. The nominal capacity (or strength) of the shear key in 

the sliding shear mechanism can be evaluated from (Bozorgzadeh et al., 2006): 

μ cos α + sin α
Vn = f Avf  fsu  (B1)

1− μ tan  βf 

in which α  is the angle of kinking of the vertical bars with respect to the vertical axis (=37°); β 

is the angle of include face of the shear key with respect to the vertical axis; μ f  is the kinematic 

coefficient of friction of concrete (=0.36); and fsu and Avf  are the ultimate tensile strength and 

area, respectively, of the vertical reinforcement crossing the shear plane. 

The nominal capacity of the shear key in the diagonal tension mechanism can be computed 

from (Bozorgzadeh et al., 2006): 

V = V +V (B2)n c s 

in which V  is the contribution of concrete, and V  is the contribution of steel. The value of V  isc s c

given by 

' V = 0.2 f  bh  (B3)c c 

' where f  is the compressive strength of concrete in MPa, and b and h  are the width and heightc 
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in meters, respectively, of the abutment stem wall. Note that units of V  from Equation (B3) are c

in MN, which can be converted to the units of kN by multiplying the answer from Equation (B3) 

by 1000. The contribution of steel, V , is given bys

2 2⎡ h d ⎤⎛ 1 ⎞V = ⎢ A  f h  + A  f d  + n A  f  + n A  f  (B4)s s1 y s2 y h sh y v sv y ⎥⎜ ⎟
⎢ 2s 2s ⎥⎝ h + a ⎠⎣ ⎦

where As1  is the total area of the horizontal tie (or hanger) bars; As2  is the total area of the 

inclined bars in the first row crossing the shear key interface; Ash  and Asv are the area of single 

horizontal and vertical bars, respectively (see Figure B1a); nh  and nv  are the number of side 

faces with horizontal and vertical side reinforcement, respectively; s  is the spacing of horizontal 

and vertical bars; d  is the thickness of shear key at the interface with abutment stem wall; 

a = 0.167d ; and f  is the yield strength of steel assumed to be identical for all reinforcing bars. y 

h 

d 

A
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A
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Force 
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Megally, et al. (2001) 
Tri−linear 

u 
y 

u 
n 

u
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u
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u 
m 

Displacement 

(a) (b) 
Figure B1. (a) Shear-key details, and (b) shear-key force-deformation relationship. 

Under the action of a horizontal force (or shear) applied to the shear key, one of the two 

aforementioned mechanisms would develop in exterior shear keys. Depending on the 

reinforcement details and construction joint of a shear key, a mechanism that requires the lowest 

shear force would develop at the failure limit state. 
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B.2 FORCE-DEFORMATION RELATIONSHIP OF SHEAR KEY 


In addition to the shear key strength described in the preceding section, this investigation needed 

a complete description of the force-deformation relationship. While a force-deformation 

relationship is not currently available for the sliding shear mechanism, a simple relationship has 

been developed for the diagonal tension mechanism (Megally et al., 2001). In this relationship, 

shown in Figure B1b, the displacements at various levels are given as: 

) (h d )u = 2ε (L L  
+ 

+ (B5a)y  y d  a  2 2h d  +

+ 
u = 2ε (L L  ) (h d ) (B5b)+n  y d  a  s 

u = ε L L  + ) (h d ) (B5c)4 2 0.005 ( d a 
+ 

s 

) (h d )u = 2ε0.007 ( + a 
+ 

(B5d)L L  5 d s 

ε y ε = 0.005 ε = 0.007where is the yield strain in steel, 0.005 , 0.007 , La is equal to width of the 

mstem wall, and Ld  is the reinforcement development length. The displacement u is obtained by 

unassuming the slope of the curve between u5  and um  to be the same as that between u and 4 . 

Finally, the force Vy is defined as 

u
V  V V  + y (B6)= y s c un 

In this investigation, the force-deformation relationship presented by Megally et al. (2001) 

has been idealized by a tri-linear curve (Figure B1b). The hysteretic rule, however, is similar to 

that presented by Megally et al. (2001). Furthermore, the force-deformation relationship of the 

shear key is based only on the diagonal tension mechanism, i.e., the possibility of sliding shear 

mechanism for which force-deformation relations is not currently available has been excluded. 

Such simplifications are not likely to significantly alter the observations and conclusions. 
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Development of the shear-key force-deformation relationship using the aforementioned 

procedure requires that the abutment design, i.e., size and reinforcement details, be available. In 

this parametric investigation, however, such details were not available. One option was to scale 

experimental results from the shear key Test Unit 4A with details currently used by CALTRANS 

and tested at UCSD (Bozorgzadeh et al, 2006). This unit was built at 1:2.5 scale of a prototype 

abutment design. Therefore, the force-deformation relationship developed for the details of the 

test unit using Equations B5 and B6 was scaled as follows to obtain the force-deformation 

relationship of the prototype abutment: multiply the displacements and forces of the test unit by a 

factor of 2.5 and 6.25, respectively. Unfortunately, the shear key in the prototype abutment 

obtained by such scaling was too strong (it remained essentially elastic) for the structural systems 

considered in this investigation. 

The alternative procedure used in this investigation first selected the target strength, VT , of 

the shear key to be equal to 30% of the dead load reaction at the abutment. Second, the scale 

factor, sf = VT Vn , was computed in which Vn  was the strength of the test unit. Next, size and 

reinforcement details of the abutment-shear-key system in the bridge system under consideration 

were obtained by scaling the design of the test unit. Finally, the force-deformation relationship 

was developed from Equations B5 and B6 for the size and reinforcement details of scaled 

abutment design. 

Note that the procedure used in this investigation to develop the force-deformation behavior 

of shear key may not be “accurate” theoretically; however, such a simple procedure is sufficient 

for this parametric investigation because the observations and conclusions are not likely to be 

significantly affected by the shear-key force-deformation relationship. Although results are not 

presented here for brevity, force-deformation relationship of the test unit directly without any 

scaling led to the identical observations and conclusions. 
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APPENDIX C. PROPERTIES OF INELASTIC SDF SYSTEM 


The MPA procedure considering lateral force distribution corresponding to only one mode – the 

most-dominant mode – is based on the assumption that response of a nonlinear multi-degree-of

freedom (MDF) system occurs due to that mode alone. This implies that response due to other 

modes and the coupling between modes due to system nonlinearity is ignored. For such an 

assumption, Equation (1) for dynamic response of a nonlinear MDF system may be re-written as 

�� � s  ( ,  )  � = −sn��g (  )  (C1)mu + cu + f u u u t  

Tin which sn = Γ  mφn , Γ =φn 
Tmιeff φ mφ , and n  is the number of the most-dominant mode. n n n n 

Pre-multiplying Equation (C1) by φT  and using the mass- and classical damping-orthogonality n

property of modes gives 

Fsnq�� + 2ζ ω q� +  = −  Γ u�� ( )  t (C2)n n n n n gMn 

where F = φT ( ) and M = φT mφ . The response of the MDF nonlinear system then can f u,u�sn n s n n n 

be computed from

 = = φ q = Γ φ D (C3)u un  n n  n n  n  

and displacement at any reference location from 

urn = Γn rn φ D (C4)n 

in which D  is governed byn

F�� � snD + 2ζ ω D +  = −  u�� ( )  t (C5)n n n n gLn 

with L = φT mι . Note that Equation (A5) is the governing equation of motion of an inelastic n n eff 

SDF system with ω  (or T ), ζ , and force-deformation behavior defined by the Fn n n sn n 

relationship subjected to ground motion at a reference support. Utilizing Equations (C4) and 

(C5), the force-deformation relationship of the inelastic SDF system needed in the MPA 

procedure can be obtained from that of the MDF system from:  
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TFsn φn fs= (C6a)
Ln Ln 

urnD =  (C6b)n Γ φn rn  

The pushover analysis for the most-dominant mode involves applying increasing intensity of 

the force distribution given by 

fs = βnmφn (C7) 

in which βn  is the force-scale factor during pushover analysis. Utilizing Equation (C7) into 

Equation (C6a) gives 

F φT f β φT mφ β M βsn n s n n n n n n= = = = (C8)
Ln Ln Ln Ln Γn 

Therefore, the pushover curve for a MDF system can be converted to the F Ln − Dn curve ofsn 

the inelastic SDF system by Equations (C8) and (C6b). 

Although not essential, the F Ln − Dn  relation is often idealized as a bilinear (or multisn 

linear) curve because most readily available computer programs for solving response of inelastic 

SDF system utilize such force-deformational idealization. The initial slope of this curve is equal 

to ωn
2 indicating that the vibration period Tn  of the inelastic SDF system is given by 

1/ 2 
⎛ L D  ⎞ 

T = 2π n ny  ⎟ (C9)n ⎜⎜ F ⎟
⎝ sny ⎠

in which subscript y indicates the yield values. This value of Tn , which may differ from the 

period of the corresponding linear system, should be used for estimating deformation of the 

inelastic SDF system. 

The pushover curves for a multi-story building is plot of base shear, Vbn , versus roof 

displacement, urn . From such a pushover curve, F L  for the nth mode inelastic SDF systems sn n 

is computed from 
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Fsn Vbn  =  (C10)
Ln M n 

* 

in which M * = Γ  is the effective modal mass. The relationship of Equation (C10) for a multi-Ln n n 

story building is a special case of Equation (C8), which becomes evident from the following 

equations: 

T T TVbn = 1 fsn = βn 1 mφn = βnφn m1 = βnLn (C11) 

V V β L βbn bn n n n= = = (C12)
M * Γ L Γ L Γn n n n n n 

which utilize the fact that ιeff = = 1  for buildings subjected to spatially-uniform support ι

excitation. 

While the V − u  pushover curve is useful for design and evaluation of buildings, where it bn rn 

can provide useful insight into nonlinear behavior and potential weak spots of the selected 

building, it may not be appropriate for bridges crossing fault-rupture zones because the most

dominant mode, which often involves torsional motions about a vertical axis, may induce little or 

no base shear. The value of β would always be non-zero during pushover analysis using forcen

distributions for all types of modes. Therefore, the βn − urn   pushover curve is more appropriate 

for bridges crossing fault-rupture zones. 
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APPENDIX D. EXAMPLE ANALYSIS 


D.1 STATEMENT OF THE PROBLEM 

The estimation of seismic demands in nonlinear bridge crossing fault-rupture zone is illustrated 

for the Magnolia Avenue UC Bridge. This three-span continuous box-girder bridge is located on 

section of a road with a horizontal curve of radius 853.4 m (1800 ft) and a vertical curve of 

radius 579.1 m (1900 ft). It is supported on two seat-type abutments, with skew-angle of about 

19.75° at abutment 1 and 30° at abutment 4, and two single-column bents. Due to large radius of 

horizontal and vertical curves, this bridge can be idealized as three straight spans of 43.6 m (143 

ft), 41.8m (137 ft), and 39.6 m (130 ft) (Figure D1). The bridge deck has a 4% slope across its 

width (Figure D2). The deck, a 13 m (42.5 ft) wide and 1.75 m (5.75 ft) deep multi-cell box 

girder, is expected to accommodate two traffic lanes (Figure D3). The lower portion of the 

column is octagonal in shape with a total depth of 2.14 m (7 ft) (Figure D4). The upper 6.4 m (21 

ft) of the column has a parabolic flare with a total depth across the bridge deck varying from 2.14 

m (7 ft) to 4.28 m (14 ft). The primary longitudinal steel in the column cross section is arranged 

in a circular pattern and consists of a total of 30 bundles of 2 bars each with an area of 10.1 cm2 

(#11 bar) (Figure D4). The transverse reinforcement consists of circular hoops of 2.54 cm 

diameter bar (#8 bar) at a spacing of 11.4 cm (4.5 inch).  

For the purpose of this example, this bridge is assumed to cross a strike-slip fault, located 

between bents 2 and 3. The bridge is analyzed for the fault-parallel motions due to an earthquake 

of magnitude of 6.5 (Figure 3.3). The results are presented for transverse response of the bridge 

without shear keys. 

Abut. 4 

39.6 m 

Bent 3 

10 m 

Fault 

41.8 m 

Bent 2 

10.2 m43.6 m 
Abut. 1 

Figure D1. Magnolia Avenue UC Bridge. 
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Elevation 
Abutment 1 :38.9 m 
Bent 2: 38.8 m 

Elevation 
Bent 2: 27.7 m 
Bent 3: 27.6 m 

Bent 3: 38.5 m 
Abutment 4: 38 mDeck Slope = 4% 

Figure D2. Section of the Magnolia Avenue UC Bridge. 

13 m 

1.22 m 

0.724 m 

3.4 m 2.83 m2.83 m 

0.305 m

1.
75

 m
 

0.222 m 

0.197m 

Figure D3. Deck cross section for the Magnolia Avenue UC Bridge. 

Unconfined Concrete 
22.4 MPa (3.25 ksi) 

Radius = 1.07 m 

Clear Cover 
5.1 cm (2 inch) 

Longitudinal Steel 
30 Bundles of 2×10.1 cm2 bar (2× #11 Bar 

Hoop Steel 
5.1 cm2 bar @11.4 cm (#8 bar @ 4.5 inch) 

Confined Concrete 

Figure D4. Column cross section for the Magnolia Avenue UC Bridge. 

The selected bridge is analyzed using the structural analysis software OpenSees (McKenna 

and Fenves, 2001). The deck girder is modeled by linearly-elastic beam column elements. In 

order to capture the distribution of mass along the length of the deck, five elements per span 
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were used. Consistent with the CALTRANS recommendations (CALTRANS, 2006), the gross 

values for moment of inertia and polar moment of inertia were used for pre-stressed multi-cell 

box deck girder. For linear analysis, the column is modeled with single linear beam-column 

element with effective moment of inertia obtained from section moment-curvature analysis. For 

nonlinear analysis, column is modeled with nonlinear beam-column element with cross-sectional 

properties specified based on a circular fiber section. 

The inherent damping for the selected bridge is modeled with Rayleigh’s damping (Chopra, 

2007): c = a0m + a1k , where m  is the mass matrix of the system, k  is the initial elastic stiffness 

matrix of the system, and a0  and a1  are the mass- and stiffness-proportionality coefficients. In 

order to keep damping ratio to be about 5% in most significant modes of the selected systems, 

values of a0  and a1  were selected to be 0.4134 and 0.004837, respectively 

D.2 VIBRATION PERIODS AND MODES 

The implementation of the MPA and linear dynamic analysis procedures requires computation of 

the mode-shapes, vibration periods, and modal contribution factors of the linear-elastic bridge. 

The modal contribution factors are then used to identify the most-dominant mode that needs to 

be considered in these procedures. The first six mode shapes and vibration periods of the bridge 

are presented in Figure D5. The computed mode shapes indicate coupling between transverse 

and torsional motions of the bridge: the mode shapes of the selected bridge occur in pairs with 

the first two modes forming the first pair whereas fourth and fifth modes forming the second pair 

of coupled transverse-torsional modes. The third mode is coupled vertical-longitudinal mode and 

the sixth mode is a predominantly vertical mode. 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

T
1
=1.332 s T

2
=1.219 s T

3
=0.6293 s T

4
=0.4736 s T

5
=0.4637 s T

6
=0.3766 s 

Figure D5. First six mode shapes and vibration periods of the bridge. 

D.3 MODAL CONTRIBUTION FACTORS 

Illustrated next is computation of the modal contribution factors for various modes of the bridge. 

For this purpose, the effective influence vector is computed by statically applying displacement 
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equal to +1 at abutment 1 and at the base of bent 2, and −1 at the base of bent 3 and at abutment 

4. The deflected shape of the bridge associated with the effective influence vector is shown in 

Figure D6. It is apparent from this deflected shape that the effective influence vector for ground 

motions in fault-rupture zones exhibits significant torsional motions about the vertical axis of the 

bridge and therefore the selected ground motion is likely to excite modes of the bridge that 

involve torsional motions about its vertical axis.  

−1 

−1 

1 

1 

Figure D6. Deflected shape of the bridge associated with the effective influence vector. 

In order to compute the modal contribution factors, forces = eff (Figure D7a) ares mι

applied statically to the fixed-base, linear-elastic bridge to compute its deflections (Figure D7b). 
st stThe drifts in the column of bent 2 and 3 are c2 = 0.0406 and c3 = −0.0315 , respectively; and 

st stdeck displacement at abutment 1 and 4 are d1 = 0.132 and d4 = −0.109 , respectively. Note that 

units of these deformation quantities are not important as they would cancel out later during 

computation of the modal contribution factor. 

(a) 

−0.109 
−0.0315 

(b) 

0.04060.132 

Figure D7: (a) Forces = eff ; and (b) Deflected shape of the bridge due to forces,s mι 
= .s mιeff 

Next, forces corresponding to the 1st mode, s = Γ mφ (Figure D8a), are applied statically to1 1 1 

the linear-elastic bridge to compute the deflected shape (Figure D8b). The drift in bent 2 and 3 
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st stare c21 = 0.0441 and c31 = 0.0167 , respectively; and deck displacement at abutment 1 and 4 are 

st std11 = 0.085 and d41 = −0.00734 , respectively. 

−0.00734 

0.01670.0441 
0.085 

(a) (b) 

Figure D8: (a) Forces s1 = Γ1mφ1 ; and (b) Deflected shape of the bridge due to forces, 
s = Γ mφ .1 1 1 

The first mode modal contribution factor for drifts in bent 2 and 3 are 
st stc = c cst =0.0441 0.0406 =1.086 and c = cst c =0.0167 −0.0315 = −  0.530 ,21 21 1 31 31 3 

strespectively; and deck displacement at abutment 1 and 4 are d11 = d11 d st =0.085 0.132 = 0.6441 

st and d = d st d4 =−0.00734 −0.109 = 0.0673, respectively.41 41 

The aforementioned process is repeated for the first six modes of the bridge to obtain the 

modal contribution factors listed in Table D1. This table shows that the modal contribution 

factors are the largest for the first two modes – the first pair of coupled transverse-torsional 

modes (Figure D5). Although the modal contribution factors for the fourth and fifth modes, the 

second pair of coupled transverse-torsional modes (Figure D5), are non-zero, the small values 

indicate negligibly small participation of these modes. The modal contribution factors for the 

third and sixth modes, the two predominantly longitudinal modes, are zero implying that these 

modes are not excited. The modal contribution factors presented in Table D1 also indicate that 

the first mode is the most dominant mode for deck displacement at abutment 1 and drift in bent 2 

but second mode is the most-dominant mode for deck displacement at abutment 4 and column 

drift in bent 3. 
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Table D1. Modal contribution factors. 

Mode Abut. 1 Abut 4. Bent 2 Bent 3 
1 0.643 0.068 1.086 -0.530 
2 0.359 0.929 -0.088 1.531 
3  0 0 0 0 
4 -0.001 0.001 0.001 -0.001 
5 -0.001 0.001 0.001 0.000 
6  0 0 0 0 

D.4 QUASI-STATIC RESPONSE 

Required in the three approximate procedures presented in this report is the peak value of the 
s squasi-static response, including gravity load effects, ro g+ . For calculating ro g , the gravity loads+ 

are applied to the structure followed by static application of peak support displacements of +0.35 

m, +0.35 m, −0.35 m, and −0.35 m on base of abutment 1, bent 2, bent 3, and abutment 4, 

respectively, that occur at these supports due to the selected ground motion. Since the shear keys 

are not engaged in the example bridge, the support displacements at abutment 1 and abutment 4 

do not induce deformations in the bridge. A nonlinear static analysis of the selected bridge to the 

gravity loads and the aforementioned support displacements leads to the quasi-static 

displacements shown in Figure D9. Note that the support displacements are applied in small 

increment during the nonlinear static analysis in order to keep the numerical errors within 

acceptable level. The peak drift in bents 2 and 3 are computed as 
s s(0.323) (  − 0.350) = 0.027m and c + = −0.322 − −  0.350) = 0.028m , respectively;(  ) (  c2o g+ = 3o g  

sand deck displacement at abutments 1 and 4 as d + = (0.991) (  − 0.350) = 0.641m and1o g  

s ( 0.930) (  − −  0.350)d = −  = 0.580m , respectively. The contributions of gravity loads to the4og 

selected response quantities are negligibly small. 

−0.93−0.35 

−0.35 

−0.322
0.323 

0.35 

0.35 

0.991 

Figure D9. Peak values of nonlinear quasi-static displacement of the selected bridge.  
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D.5 PEAK DYNAMIC RESPONSES 


Three approximate procedures are implemented to estimate the dynamic response: MPA, linear 

dynamic analysis, and linear static analysis. 

D.5.1 MPA Procedure 

Application of Steps 1 and 2 of the MPA procedure led to mode shapes and periods in Figure B5 

and effective influence vector in Figure D6. These mode shapes along with the effective 

influence vector were used to generate the modal contribution factors in Table D1. It was found 

that the first mode is the most dominant mode for deck displacement at abutment 1 and drift in 

bent 2 but second mode is the most-dominant mode for deck displacement at abutment 4 and 

column drift in bent 3. The implementation of Steps 3 and 4 of the MPA procedure is illustrated 

next. 

Step 3. 
The peak value of dynamic response, rno , in the most dominant modes is computed from the 

pushover analysis as follows: 

Step 3.1. 
Figures D10a and D11a show the pushover curves β1 − ur1 and β2 − ur2 for the first and second 

* *“mode” force distributions, f =  β mφ  and f =  β mφ , respectively. Recall that first mode is 1 1 1 2 2 2 

the most dominant mode for deck displacement at abutment 1 and drift in bent 2 and second 

mode is the most-dominant mode for deck displacement at abutment 4 and column drift in bent 

3. Reference location for developing these pushover curves is selected as the node on the deck at 

abutment 1 of the bridge. 

Step 3.2. 
The pushover curve of Figures D10a and D11a are converted to the force-deformation 

relationships for the first- and second-“mode” inelastic SDF system by utilizing F L = βsn n n Γn 

and Dn = u Γnφrn  . These relationships are shown in solid line in Figures B10b and B11b.rn  
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Figure D10. (a) First-“Mode” pushover curve; and (b) F / L − D  relationship for thesn n n 
first “mode” inelastic SDF system. 
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Figure D11. (a) Second-“Mode” pushover curve; and (b) F / L − D  relationship for thesn n n 
second “mode” inelastic SDF system. 

Step 3.3. 
The force-deformation relationships of the first- and second-“mode” inelastic SDF system are 

idealized in Figures D10b and D11b by a bilinear curve (dashed line). These idealizations 

provide yield displacement, yield force, and post-yield stiffness ratio of 0.0846, 1.3, and 0.256 

for the first-“mode” SDF system (Figure D10b); and 0.0675, 1.5, and 0.111 for the second

“mode” SDF system (Figure D11b).  

Step 3.4. 
Analyses of the first- and second-“mode” inelastic SDF systems defined by the idealized bilinear 

100 
1.5 

1 
50 
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force-deformation relations of Figures D10b and D11b subjected to the selected ground 

acceleration at the reference location provide D1 = 0.175m and D2 = 0.152m ; the damping 

ratios computed from specified Rayleigh’s damping with a0 =0.4134 and a1 = 0.004837, for first 

and second mode are ζ1 = 5.52% and ζ 2 = 5.26% , respectively. Note that the initial elastic 

vibration period of the inelastic SDF system obtained form the force-deformation relationship 

(Figures D10b and D11b) are slightly longer that the first- and second-“mode” vibration period 

of the linearly elastic bridge (Figure D5).  

Step 3.5. 
The peak reference point displacements associated with the first- and second-“mode” are 

computed as ur1 = 0.331m and ur2 = 0.192m . These displacements are also noted on the 

pushover curves of Figures D10a and D11a. 

Step 3.6. 
First-“mode” pushover analysis of the bridge to the peak reference location displacement of 

0.331 m leads to drift in bent 2 and 3 of c21o g  = 0.194m and c31 + = 0.0793m , respectively;+ o g  

and deck displacement at abutment 1 and 4 of d11o g  = 0.331m and d41 + = 0.0283m ,+ o g  

respectively (Figure D12). Similarly, second-“mode” pushover analysis of the bridge to the peak 

reference location displacement of 0.192 m leads to drift in bent 2 and 3 of c22o g  = 0.0798m + 

and c32o g  = 0.330m , respectively; and deck displacement at abutment 1 and 4 of + 

d12o g  = 0.192m and d41 + = 0.580m , respectively (Figure D13).+ o g  

Step 4. 
Since contributions due to gravity loads are negligibly small, the peak values of the dynamic 

response are: c2o = 0.194m , c3o = 0.330m , d1o = 0.331m , and d4o = 0.580m . Note that the 

deck displacement at abutment 1 and drift in bent 2 are selected from the first-“mode” pushover 

analysis and deck displacement at abutment 4 and drift in bent 3 are selected from the second

“mode” pushover analysis. 
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−0.0283 

0.07930.194 
0.331 

Figure D12. Deflected shape of the example bridge at reference displacement of 0.331m 
from the first-“mode” pushover analysis. 

−0.58 

−0.33−0.0798 
0.192 

Figure D13. Deflected shape of the example bridge at reference displacement of 0.192m 
from the second-“mode” pushover analysis. 

tThe total response of the bridge are: c2o = 0.027 + 0.194 = 0.221m , 

t t tc3o = 0.028 + 0.330 = 0.358m , d1o = 0.640 + 0.331 = 0.971m , and d4o = 0.580 + 0.580 =1.16m . 

D.5.2 Linear Dynamic Analysis 

Application of Steps 1 and 2 of the linear dynamic analysis procedure led to mode shapes and 

periods in Figure D5 and the effective influence vector of Figure D6. The modal contribution 

factors computed in the MPA procedure indicated that the first mode is the most dominant mode 

for deck displacement at abutment 1 and drift in bent 2 but second mode is the most-dominant 

mode for deck displacement at abutment 4 and column drift in bent 3. The implementation of 

Steps 3 and 4 of the linear dynamic analysis procedure is illustrated next. 

Step 3. 
Using mode shapes of Figure D5 and effective influence vector of Figure D6, the values of Γn 

are computed as: Γ = 45.2  for the first mode and Γ = 59.6  for the second mode. 1 2 
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0.0675 

−0.0296 

0.343 
0.178 

(a) (b) 

Figure D14: (a) Force s1 = Γ1mφ1A1; and (b) Deflected shape of the linear-elastic example 
bridge due to s1 = Γ1mφ1A1 . 

(a) 

−0.45 

−0.215 

(b) 

−0.016
0.211 

Figure D15: (a) Force s2 = Γ2mφ2 A2 ; and (b) Deflected shape of the linear-elastic example 
bridge due to s2 = Γ2mφ2 A2 . 

Step 4. 
The equivalent lateral forces corresponding to the first mode equal to s1 = Γ1mφ1A1 (Figure 

D14a) are applied to linear-elastic bridge to obtain peak values of dynamic drift in bent 2 and 3 

as c2o = 0.178m and c3o = 0.0675m , respectively; and deck displacement at abutment 1 and 4 as 

d1o = 0.343m and d4o = 0.0296m , respectively (Figure D14b). Similarly, equivalent lateral 

forces corresponding to the second mode equal to s2 = Γ2mφ2 A2 (Figure D15a) are applied to 

linear-elastic bridge to obtain peak values of dynamic drift in bent 2 and 3 as c2o = 0.016m and 

c3o = 0.215m , respectively; and deck displacement at abutment 1 and 4 as d1o = 0.211m and 

d4o = 0.450m , respectively (Figure D15b). 

tThe total response of the bridge are: c2o = 0.027 + 0.178 = 0.205m , 

t t t= 0.028 + 0.215 = 0.243m , d = 0.640 + 0.343 = 0.983m , and d = 0.580 + 0.450 =1.03m .c3o 1o 4o 

D.5.3 Linear Static Analysis 

Application of Steps of the linear static analysis procedure led to the effective influence vector of 

Figure D6. The implementation of Step 2 of the linear static analysis procedure is illustrated 
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−0.211 

next. 

Step 2. 

Linear analysis of the bridge for equivalent lateral forces = 2.5mι u��go (Figure D16a) leads to
eff 

dynamic drift in bents 2 and 3 as c2o = 0.270m and c3o = 0.221m , respectively; and deck 

displacements at abutment 1 and 4 as d1o = 0.881m and d4o = 0.726m , respectively (Figure 

D16b). 

−0.726 
0.270.881 

(a) (b) 

Figure D16: (a) Forces 2.5mιeff u��go ; and (b) Deflected shape of the bridge due to 

forces = 2.5mι �� .eff ugo 

tThe peak values of the total responses of the bridge are: c2o = 0.027 + 0.270 = 0.325m , 

t t t= 0.028 + 0.211 = 0.239m , d = 0.640 + 0.881 = 1.52m , and d = 0.580 + 0.726 = 1.31m .c3o 1o 4o 
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