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ABSTRACT
 

Recent field observations in bridge falsework identified potential deficiencies in the 
design of falsework resulting in localized bending in sill and cap beam flanges and lateral 
buckling in other beams.  Possible limits states associated with the bearing of timber and 
steel posts on cap and sill beams are investigated in this report.  The critical limit states are 
related to flange bending, post crushing or yielding, web yielding, web crippling, lateral 
web buckling and corbel crushing. Different methods are investigated for predicting the 
capacity of the flange.  The first assumes a uniform stress distribution resulting in bending 
of the flange. This is adequate for timber posts, but not as accurate at the second more 
elaborate method which accounts for an interaction between flange bending and post 
compression strength, found to be effective for timber posts. The third method uses an 
effective bearing area of the post, which is more effective with steel posts.  For beams with 
relatively thick webs, such as those typically used in bridge falsework, the web was found 
to have a greater capacity than the flange and posts.  The critical web limit state was web 
yielding (refered to as web crippling in the Caltrans Falsework manual) with variations of 
existing equations found to be appropriate for predicting the capacity.  Web crippling (as 
defined by ASCE) is found to generally not govern the design. Lateral web buckling may 
govern the design, particularly when two sill beams are stacked on top of each other. 
Blocking may be used to increase the flange bending and web yielding capacity, although 
lateral bracing or stiffeners are recommended to increase lateral buckling capacity. 
Design equations are presented in allowable stress design format for the consideration of 
the critical limit states in a falsework bent.  These are compared to current Caltrans design 
practice and other relevant specifications.  Two design examples are also provided to 
demonstrate the application of these equations, one using timber posts and a second using 
steel posts. 
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SECTION 1
 
INTRODUCTION
 

Falsework is used in the construction of cast-in-place box girder bridges, found 
extensively on the west coast of the United States.  Falsework is defined at the temporary 
structure that supports the main structure during construction, in contrast to formwork, 
which consists of the temporary components used to provide the desired shape to a 
structure. Construction falsework in bridges typically consists of: timber or concrete 
foundations pads; timber corbels, sand jacks and wedges; steel sill beams; timber or round 
hollow steel posts; steel cap beams, timber or steel stringer beams and timber joists. 
These are stabilized for lateral loads using a series of timber or cable braces.  An example 
of these components with steel posts and stringer beams is shown in Figure 1-1, while a 
another example with timber posts is shown in Figure 1-2. 

Historically failure of falsework has occurred due to a number of causes, from events that 
result in overload of the falsework, to inadequate design and checking of the falsework 
(Hadipriono 1986) Generally these failures can be prevented by proper execution of an 
established design procedure and appropriate construction management.  However, recent 
field observations highlighted possible design deficiencies in the type of falsework shown 
in Figures 1-1 and 1-2. In some cases localized flange bending was observed at the 
interface between the cap and sill beams and posts, as illustrated in Figure 1-3. While local 

FIGURE 1-1 Bridge Falsework for the Petaluma River Bridge at the intersection of 

California State Routes 101 and 116
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FIGURE 1-2 Bridge Falsework for Railroad Avenue Overcrossing at Pittsburg, California 

web yielding of the beam may be checked during design, there is no available method for 
checking the flange bending capacity required to resist the effects of a flexible patch 
loading from a timber or steel post.  In another example of falsework failure, lateral 
instability of a beam is observed through deformation of an unrestrained web, as shown in 
Figure 1-4. Sill and cap beams are generally not braced and not stiffened, thus the 
potential for lateral instability is much greater than for a beams in other typical 
applications. Thus the stability of the beams should be considered in design, although 
there is currently no rational method for such consideration. 

The AISC LRFD specifications for structural steel buildings (AISC 2005) allows for the 
calculation of flange bending capacity in beam column joints.  The ultimate load in the 
column flange assumes that a tensile line load is applied to the column flange from the 
beam flange (Graham et al. 1959).  A yield line pattern in the column flange and a uniform 
stress distribution from the beam flange is then assumed in order to calculate the ultimate 
capacity of the flange. However, this equation is very conservative if applied to flange 
bending from compressive patch loading as the region of flange available to resist the load 
2
 



FIGURE 1-3 Localized flange bending failure in sill beam (J. Lammers, Caltrans, 

Personal communication)
 

FIGURE 1-4 Instability of sill beam resulting in lateral deformation of web (J. Lammers, 

Caltrans, Personal communication)
 

is much greater for a patch load than a line load and a compression load allows large 
stresses around the web. Past studies on the effect of patch loading (Roberts and Rockey 
1979, Roberts and Markovic 1983, Elgaaly 1983, Roberts and Newark 1997, Graciano 
and Edlund 2003) have generally assumed rigid patch loads which have not resulted in 
flange bending other than that required for deformation of the web.  A rigid patch load is 
defined as one where the patch load does not deform resulting in a redistribution of 
stresses if the loaded member deforms.  This is in contrast to a flexible patch load which 
deforms as the loaded member deforms resulting in a more constant distribution of 
stresses. The case of a flexible patch load provided by a timber post has not been 
considered and, therefore, there is no method for predicting the resulting capacity of the 
beam flange. 
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The effect of patch loading on the web of beams or columns has been considered by a 
number of researchers. As a result there are two limit states considered for the localized 
loading of a beam web, local web yielding that governs for stocky webs, summarized by 
Galambos (1976), and web crippling that governs for more slender webs, as summarized 
by Elgaaly (1983). Chen and Newlin (1973) developed an expression for the localized 
buckling of beam webs for an equal and opposite concentrated load applied to both edges 
of the web, based on classic plate buckling theory (Timoshenko and Gere 1961).  As with 
the equation developed for flange bending, this equation is expected to be conservative for 
an applied patch loading, where the area of web involved in resisting the load is 
considerably greater than for concentrated loads.  The buckling equation developed by 
Chen and Newlin (1973) also assumes that both flanges are restrained from lateral 
deformation. If there are no stiffeners at any location along a beam, then it may be 
possible for buckling of the web with lateral deformation of one of the flanges. 

Thus, in development of design criteria for unstiffened beams used in bridge falsework, 
further study is required to investigate the effect of patch loads from timber and steel posts 
on bending of the beam flanges, yielding or crushing of the posts, and yielding, crippling 
or lateral buckling of the web. 

The objectives of this study are to: 

• Experimentally investigate the flange bending capacity of typical falsework beams 
subjected to patch loading from timber and steel posts. 

• Experimentally investigate the localized critical web limit states in falsework beams 
for timber and steel post loads. 

• Experimentally investigate global instability of the web without the use of stiffeners 
and lateral bracing. 

• Determine effectiveness of blocking in increasing the flange and web capacities. 

• Determine the impact of accidential eccentricity between the centroid of a timber or 
steel posts and centroid of the beams. 

• Compare the	 current design equations and allowable stresses in the Caltrans 
Falsework Manual with other current design specifications. 

• Provide recommendations for changes to the current design procedure to prevent 
future failures of falsework beams. 

The scope of this study is limited to experiments on subassemblies of timber or steel post 
and beam joint regions. Finite element analyses are used to investigate the longer beams 
and posts for critical cases.  Several typical size falsework beams are considered 
experimentally with a larger range of beams used in finite element analyses.  The focus of 
this study is on the critical components in falsework with the stability of falsework 
systems not considered. 
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SECTION 2
 
EXPERIMENTS ON FALSEWORK COMPONENTS AND SUB-ASSEMBLIES 

2.1 Overview 

A series of component experiments were performed on short lengths of typical timber 
posts, timber corbels and steel posts used in bridge falsework.  Sub-assembly experiments 
were also performed with timber and steel posts bearing onto short beam segments using 
beams with sizes like those typically used in bridge falsework.  In some cases corbels were 
also placed under the beam. The set-up and results from each of the component and 
subassembly experiments are outlined below. 

2.2 Setup of Sub-assembly Experiments on Beams with Posts and Corbels 

A series of experiments were performed to study the different limit states in a beam-post 
connection region. A typical setup with a 48 in. long 12x12 in. timber post, 48 in. long 
steel beam and 48 in. long 12x12 in. timber corbels centered 24 in. apart behind the beam, 
is shown in Figure 2-1. The configuration and dimensions of a typical experiment with a 
timber post and corbels are shown in Figure 2-2. The actual vertically orientated 
falsework was orientated horizontally to facilitate loading during experiments.  The post-
flange is consisted to be the flange adjoining the post while the corbel-flange is the flange 
bearing against the timber or steel corbels, as for a sill beam in typical falsework.  A cap 
beam would be similar, although only the post-flange need be considered as there are no 
corbels. 

The flanges were restrained at the ends of the 48 in. long beam segments by a steel frame, 
as shown in the figure, preventing lateral instability of the beams for studying the 
localized flange and post limit states.  Loads were applied to the end of the 48 in. long 
posts through a slider, to limit lateral deformation at the end of the post, in turn attached to 
a displacement controlled hydraulic actuator.  Three different beam sections were used, 
including ASTM A572Gr50 HP12x53 and HP14x73 beams, and ASTM A992 W14x90 
beams. Number 2 Douglas Fir 12 x 12 in. timber members were used for the posts and 
corbels, while an 18 in. diameter 3/8 in. thick round hollow steel section with a 1/2 in. thick 
base plate was also used to simulate a steel post in two experiments. In these experiments 
an additional corbel was placed directly in line with the centroid of the columns.  In some 
experiments the timber corbels were replaced with steel plates as shown in Figure 2-3 in 
order to eliminate the effect of the corbels from the system.  In other experiments, that 
focused on web yielding and crippling, a rigid 12 x 12 in.steel plate was used instead of a 
post, as shown in Figure 2-4. Some experiments also used 6 x 8 in. Number 2 Douglas Fir 
timber blocking, placed between the flanges on both sides of the web. This blocking is 
sometimes used in falsework in an attempt to increase the flange and web capacity of the 
beams and was investigated to determine its effectiveness. In some cases an eccentricity 
5
 



FIGURE 2-1 Sub-assembly setup with actuator, timber post, steel beam, restraints and 
corbels 

was employed between the centroid of the beam and post, equal to1/12th of the beam 
flange width or 1/6th of the flange width. The final variation in the experiments was the 
removal of the lateral restraints, in which case the beams were supported by connecting 
one flange to the steel bracket behind the beam.  The removal of restraints allowed the 
other flange to deflect laterally on application of loading from a post.  This is to simulate 
lateral buckling of an unrestrained, unbraced beam. 

The combination of beam sizes, with and without corbels, with and without blocking, with 
and without eccentricities and with different types of posts is described in Table 2-1.  The 
highlighted regions refer to combinations that were used in experiments and the numbers 
refer to the order of the experiments.  In addition to the subassembly experiments 
described in this table, component experiments were performed on timber posts, corbels a 
steel post along with coupon tests on samples from the steel beams to better understand 
the material and component behavior of the various elements, as described below. 

2.3 Coupon Tests 

Eight coupons were cut from the flange and web of four beams after experiments were 
completed in order to determine the material properties of the steel in the beams.  The 
results from the coupon tests are given in Table 2-2. The average yield stress is 53.3 ksi, 
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FIGURE 2-3 Sub-assembly setup without timber corbels 

FIGURE 2-4 Sub-assembly setup without a post or timber corbels 
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TABLE 2-1 Combinations of beams, posts, corbels, blocking and eccentricities used i 
experiments 

Section HP12x53 HP14x73 W14x90 
Post Type None Timber Timber None Timber Timber None Timber Timber Steel Timber None 
Corbels None 2 Timber 2 Steel4 None 2 Steel 2 Steel4 None 2 Timber 2 Steel4 3 Timber 2 Steel4 None 
Lateral Restraint Yes Yes Yes Yes Yes No Yes Yes Yes Yes No No 
Nominal 
Eccentricity = 
0 

No Blocking Beam #10 Beam #12 Beam #18 Beam #9 Beam #20 Beam #29 Beam #6 Beam #1 Beam #22 Beam #2 Beam #26 Beam #5 

Blocking Beam #133 Beam #19 Beam #21 Beam #30 Beam #23 Beam #28 

Nominal 
Eccentricity = 
bf/12 

No Blocking Beam #16 

Blocking Beam #17 

Nominal 
Eccentricity = 
bf/6 

No Blocking Beam #11 Beam #14 Beam #8 Beam #27 Beam #31 Beam #7 Beam #4 Beam #24 Beam #3 

Blocking Beam #15 Beam #25 Beam #32 

Notes: 1. Highlighted areas show combinations of beams and other factors that have were used in experiments 
2. All beams shown in this above matrix are 4' long 
3. This experiment had timber corbels but also steel plates between the beam and the corbels to minimize stress concentrations in the corbels 
4. Steel plates were used in place of timber corbels. 

TABLE 2-2 Summary of results from coupon tests 

Section Coupon 
Location 

Yield Stress 
(ksi) 

Ultimate Stress 
(ksi) 

Ultimate Strain 
(%) 

Elastic Modulus 
(ksi) 

HP12x53 
Flange 55.7 76.4 31.6% 28200 
Web 54.3 75.7 30.9% 29000 

HP14x73 
Flange 49.4 68.3 32.5% 34100 
Web 50.9 72.2 33.0% 35800 

W14x90 - 1 
Flange 52.5 71.0 36.7% N/A 
Web 58.2 73.0 32.4% 30000 

W14x90 - 2 
Flange 51.4 69.5 38.5% 31800 
Web 54.3 72.0 30.7% 31800 

with a range between 49.4 and 58.2, and is close to the expected stress for the A572 Gr. 50 
steel and A992 steel of 55 ksi.  It is greater than or approximately equal to the minimum 
specified stress of 50 ksi in all cases. The ultimate stress is around 20 to 40% higher than 
the yield stress. The ultimate strain varies between 30 to 39%.  The elastic modulus varies 
between 28000 and 36000 ksi, within 25% of the design value of 29000 ksi. 

2.4 Component Experiments 

2.4.1 Timber Posts 

Three, 4 foot long, Number 2, Douglas Fir, 12x12 in. timber posts were crushed as shown 
in Figure 2-5 to determine the compressive strength of these posts parallel to the grain. 
The actuator force is plotted against the displacement measured at the end of the slider 
where it connects to the post in Figure 2-6 for the three posts.  The figure shows that the 
stiffness for each post, indicated by the slope of the curves, is initial relatively small but 
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FIGURE 2-5 Component experiment on 4 foot long 12x12 in. Timber Post 
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FIGURE 2-6 Actuator force vs slider displacement for different post component 
experiments 
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increases as any gaps between the ends of the post and adjacent reactions are closed.  Once 
this happens the maximum stiffness is reached.  As the load continues to increase the 
stiffness starts to drop again indicating the onset of crushing of the post.  When the 
maximum load is reached, severe crushing and splitting of the post is observed.  The 
maximum load in posts 1 and 2 is within 10% of each other, however the maximum load 
in post 3 is 30-40% less. This is indicative of the large variability possible in these posts 
particularly as they are Number 2 specimens thus splitting and imperfections are typically 
found in the members. The lower strength is also attributed to a lack of squareness, which 
was most pronounced at the end of this post, and resulted in stress concentrations in part of 
the post inducing premature failure of the post.  This is a typical feature of falsework posts 
and therefore a conservative design of the post is required.  

The failure load in each post and all other experiments was not defined as the maximum 
load, but at a load where the stiffness of the post dropped to 50% of its initial stiffness. The 
initial stiffness was defined from the force-displacement curve between 25 and 75% of the 
estimated failure load. This was used in order to define significant crushing or yielding 
and was generally within 10 to 15% of the maximum applied force for each experiment 
where a reduction in force was observed after failure. In some experiments such as those 
where timber corbels crushed, as described in the following section, a reduction in force 
was not observed. Instead the force continued to increase up to large inelastic 
displacements. In this case a definition of failure load as above was necessary to define 
failure. 

The stiffness of Post 1 is plotted against the slider displacement in Figure 2-7 with some 
averaging of the data used to smooth the stiffness.  The initial stiffness for this post was 
estimated at 975 kip/in. The force in the post corresponding to where the load dropped to 
50% of this initial stiffness was determined and defined as the failure load.  The failure 
loads were 367, 337 and 221 kip respectively for the three timber post component 
experiments, as shown by the dashed lines in Figure 2 for each of the posts.  The 
corresponding axial failure compression stresses were 2770, 2540 and 1670 psi based on 
11.5 in square actual post dimensions. 

2.4.2 Timber Corbels 

A component experiment was performed on a 12x12 in. Number 2 Douglas Fir timber 
corbel, as shown in Figure 2-8. A 15 in. wide patch load was applied to the corbel, similar 
to the 14 to 15 in. wide flange of a typical falsework beam.  The corbel was identical to the 
timber post except that the load was applied perpendicular to the grain.  The failure load in 
the corbel was defined when the stiffness reduced to 50% of the initial stiffness using the 
same procedure as for the timber post.  Unlike the timber post, however, the force-
displacement curve in Figure 2-9 shows that once the failure load was reached the force 
did not drop but continued to increase as the timber in the corbel densified with increasing 
deformation. Thus failure of a corbel is likely to be less catastrophic than failure of the 
post as it continues to carry the load after failure.  The failure load for the corbel was 
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FIGURE 2-7 Stiffness vs slider displacement for post component experiment (Post 1) 

calculated at 93 kip, corresponding to a failure bearing stress of 540 psi for the 11.5 in. 
wide member. 

2.4.3 Timber Blocking 

Component experiments, with axial loads applied using a load frame as shown in Figure 
2-10, were performed on three timber blocks.  The resulting force-displacement curves 
for the three blocks are shown in Figure 2-11.  The failure load for the blocks was quite 
variable. The strength in the blocks was much higher than the nominal strength based on 
the NDS wood specifications (AFPA 1996) and, in one case, the force in the blocking 
reached the capacity of the actuator in the load frame.  However, as the stiffness of the 
blocking just started to drop, the failure load was determined just before the experiment 
was terminated at 199 kip. The failure loads for the other two blocks were 159 and 133 
kip respectively.  The failure loads corresponded to stresses of 4820, 3850 and 3220 psi 
respectively based on 7.5 x 5.5 actual blocking dimensions. 

2.4.4 Steel Post 

A component experiment was also conducted on a 18 in. diameter 3/8 in. thick A500 
Grade B (42 ksi minimum specified yield stress) steel post, as shown in Figure 2-12.  The 
base plate of the post was 1/2 in thick A36 steel connected to the post using a 5/16 in. fillet 
12
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FIGURE 2-8 Component experiment on 4 foot long 12x12 in. timber corbel 
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FIGURE 2-9 Actuator force vs slider displacement for timber corbel 
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FIGURE 2-10 Component experiment on blocking in load frame 
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FIGURE 2-11 Actuator force vs actuator displacement  for three timber block component 
experiments 
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weld. At the end attached to the slider a 11/2 in. thick plate was welded to the post.  The 
failure load in the steel post was calculated at 811 kip as using the same definition for 
failure as for the timber posts and corbel. At around the failure load, the onset of yielding 
and buckling was observed in the post near the end with the 1/2 in base plate. The force 
displacement curve in Figure 2-13 does not show a reduction in force after yielding of the 
post, although the post is at the upper capacity of the actuator, therefore the experiment 
had to be terminated once the onset of yielding was observed. 

2.5 Sub-assembly Experiments on Beams with Posts and Corbels 

2.5.1 Overview 

The behavior of each of the sub-assembly experiments is described in this section.  The 
experiments with steel corbels are first discussed which resulted in crushing or yielding of 
the timber or steel post respectively in conjunction with bending of the a post-flange of the 
beam. The next set of experiments discussed are the beams with corbels, which resulted 
in bending of the corbel-flange and crushing of the corbels.  The third set of experiments 
considered are those without any posts or corbels which resulted in yielding and buckling 
of the web. The final set of experiments are those beams without any lateral restraints in 
some cases resulting in lateral web buckling.  A summary of each experiment is given, 
along with actuator force versus slider displacement curves. Each beam is named based 
on: the section size; whether is has a timber, steel or no post; whether it has blocking or no 
blocking; the use of a timber, steel, or no corbel; whether or not it is restrained, and, what 
level of eccentricity it has between the post and beam.  The number referring to the beam 
number in Table 2-1 is also given. 

2.5.2 Beams with Resulting in Post-Flange Bending and Post Crushing 

1253TPNBSCRE0 - Beam 18 

This was one of the smallest section considered, loaded through a timber post, without 
blocking, with steel corbels, laterally restrained at the flanges and without any eccentricity 
between the beam and post. As an increasing load was applied axially through a timber 
post the stiffness of the force-displacement curve (Fig. 2-14) increased until it became 
constant at around 50 kip up to a force of approximately 240 kip. The initial stiffening of 
the system was typical for all of the experiments as the gaps between the different 
components closed. Flaking, indicative of plastic deformation, was observed in the post-
flange close to the locations of the strain gauges at a force of around 210 kip.  As the load 
increased the onset of post deformation around the web of the beam was observed as 
necessary to allow the post-flange to bend, as shown in Figure 2-15. The force-
displacement curve started to flatten, as shown in Figure 2-14.  The failure load, based on 
a 50% reduction in stiffness, was calculated at 237 kip therefore was around 13% greater 
than the load when flaking was first observed in this beam.  The maximum load was 
15
 



 

 

 

FIGURE 2-12 Component experiment on 4 ft. long 18 in. diameter steel post 
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FIGURE 2-13 Actuator force vs slider displacement for timber corbel 
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reached at 243 kip at which point post crushing was observed.  No corbel-flange yielding 
or web deformation was observed in this experiment. 

Two strain gages located on the flange of this beam around where yielding was first 
observed, as shown in Figure 2-16, are plotted against the actuator force in Figure 2-17. 
One strain gage shows possible yielding due to flattening of the curve at around 205 kip, 
close the point where flaking was first observed.  The second strain gage shows flattening 
at close to 230 kip, around where the failure load was calculated.  Therefore the failure 
load is consistent with the observed inelastic behavior in the flange using these strain 
gages. Similar observations can be made for the other beams exhibiting flange bending 
when strain gages were located close to the observed yield lines. 

1253TPBSCRE0 - Beam 19 

This experiment was identical to the last except that blocking was used between the post-
and corbel-flanges on both sides of the web.  As the load was applied to the post the 
stiffness increased until the elastic stiffness was reached.  Then the post started to deform 
around the web and flange as in the previous experiment corresponding to a reduction in 
stiffness (Fig. 2-18). Engagement of the blocking increased the failure load with onset of 
flaking on the post-flange observed at around 310 kip, although the calculated failure load 
was a little less at 289 kip. The maximum load was reached at 320 kip, which 
corresponded to flange bending and timber post failure.  Slight bending was observed in 
the corbel-flange as well, though not enough to cause flaking.  There was no observed web 
deformation. 

1253TPNBSCRE12 - Beam 16 

The loading was applied axially through timber post in this experiment with an 
eccentricity of bf/12 (1.0 in.) between the post and unblocked beam.  The force-
displacement curve (Fig. 2-19) was similar to that for the concentrically loaded case 
although the stiffness was smaller, which could be due to different material properties as 
well as the eccentricity.  The post deformed around the web of the beam as in the previous 
cases, with the effect of the eccentricity simply moving the deformation laterally in the 
post. Flaking in the post-flange was observed at around 200 kip and the failure load was 
calculated at 212 kip. The maximum force was observed at 225 kip, along with severe 
post deformation and further yielding of the post-flange.  Therefore, although the failure 
and maximum loads were reduced by around 10%, there was not an appreciable change in 
response compared to the concentrically loaded case. 

1253TPBSCRE12 - Beam 17 

The same eccentricity as the previous case was imposed with blocking also used between 
the flanges. The observed response of the beam was similar to the previous blocked case. 
The force-displacement curve (Fig. 2-20) showed typical stiffening, followed by a period 
17
 



 

of elastic response, followed by a reduction in stiffness due to post crushing.  After an 
initial drop in load the force increased slightly then plateaued as the forces were 
redistributed through the post, although failure was considered to have occurred prior to 
this behavior.  The failure load was calculated to be 284 kip.  No flaking was observed in 
the flange until a force of 320 kip was reached. There was a small amount of bending 
prior to this, as a small gap observed between the blocking and the flange closed, but this 
was not sufficient to cause yielding.  The load reached a maximum of 335 kip. 

253TPNBSCRE6 - Beam 14 

This unblocked beam had a larger eccentricity equal to bf/6 (2.0 in.). The response (Fig. 2-
21) was almost identical to the previously described unblocked case.  The failure load was 
calculated to be 221 kip. At this point, bending of the post-flange and flaking was 
observed close to the location of the strain gauges.  Figure 2-22 shows the strains in four 
gages on the post-flange of the beam located close to the yield lines, with two on each side 
of the web. These strain gages all show the onset of yielding at a force of between 210 to 
220 kip. Despite the eccentricity the strain gages on both sides of the web show yielding 
at a similar force. The force reached a maximum of 230 kip before being reduced as 
complete post crushing was observed. 

1253TPBSCRE6 - Beam 15 

This eccentrically loaded blocked beam performed similarly to the previous case with 
blocking. Upon yielding of the beam and crushing of the post an immediate reduction in 
load was not observed (Fig. 2-23), instead the load plateaued.  The failure load was 
calculated at 285 kip. At around 300 kip yielding of the post was observed with some 
inelastic bending in the post-flange observed at this time.  The maximum load was reached 
after significant inelastic deformation at 335 kip, when the post completely crushed. 

1473TPNBSCRE0 - Beam 20 

This was the next size beam considered, loaded concentrically without blocking. The 
response (Fig. 2-24) was similar to that for the smaller beam, although the failure load was 
increased due to increased flange bending capacity, even though the post had a similar 
strength. The failure load was calculated to be 275 kip with a maximum load reached of 
290 kip, whereupon the onset of bending in the post-flange was observed.  Flaking was 
observed at around 290 kip. Crushing of the post and the flange appeared to occur almost 
simultaneously.  No corbel-flange yielding was observed. 

1473TPBSCRE0 - Beam 21 

The same configuration as above was used for this beam with additional blocking between 
the flanges. At 340 kip the onset of flaking was observed in the post-flange, although it 
was limited as the blocking was activated.  The failure load was calculated at 381 kip (Fig. 
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2-25). The maximum load was around 395 kip, after which the post failed.  Relatively 
little bending was observed in the post-flange due to blocking, but it was enough to be 
considered failure of the beam. 

1473TPNBSCRE6 - Beam 27 

This unblocked beam had an eccentricity between the beam and post of bf/6 (1.2 in.). The 
failure load was calculated to be approximately 283 kip, thus very similar to the 
concentrically loaded beam.  Bending in the post-flange was observed along with sudden 
post deformation at failure.  No flaking was observed until after the maximum load was 
reached. The load dropped quickly after the maximum load was reached, as shown in 
Figure 2-26. 

1473TPBSCRE6 - Beam 25 

The blocked, eccentrically loaded beam has a reduced strength compared to the 
concentrically loaded beam, although this could be largely due to a variation in post 
strength. The failure load was calculated to be 310 kip.  The load-displacement curve (Fig. 
2-27) peaked at around 320 kip and stayed relatively constant over 0.4 inches of applied 
displacement.  Some initial post-flange flaking was observed as post deformation 
increased, but was limited once blocking was activated until well after the maximum load 
was reached. At large displacements, the timber block split, resulting in significant flange 
bending and an reduction in the load carrying capacity at this stage.  

1490TPNBSCRE0 - Beam 22 

This is the first of the W14x90 beams, concentrically loaded, without blocking.  As with 
the other beam sizes flaking was observed in the post-flange, although at a higher load of 
around 300 kip due to the thicker flange. The failure load was calculated to be 291 kip. 
The force peaked at 320 kip and stayed constant for about 0.2 inches of applied post 
displacement, after which is started to drop, as shown in Figure 2-28.  The failure was 
through a combination of flange bending and post crushing as for the previous beams. 

1490TPBSCRE0 - Beam 23 

With blocking, the response (Fig. 2-29) of the W14x90 beam was similar to the unblocked 
case. The failure load was calculated at 307 kip with a small amount of flaking around the 
block observed at around 325 kip.  Bending of the post-flange diminished once the 
blocking became effective.  The load rose to a maximum of 335 kip at which time failure 
was observed largely through crushing of the post.  As in all previous experiments, no web 
yielding was observed. 
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1490TPNBSCRE6 - Beam 24 

This eccentrically loaded, unblocked beam performed similarly to the concentrically 
loaded beam. The failure load was calculated at 293 kip.  Flaking around the post-flange 
was observed at the same level of force. The load reached a maximum of approximately 
300 kip (Fig. 2-30), at which point web yielding was observed. In this experiment the 
onset of web yielding was observed through flaking of the web at the maximum load, 
attributed to the eccentricity coupled with a relatively thin web compared to the flange 
thickness.  Despite the web inelasticity, it did not significantly affect the performance of 
the beam. 

Summary 

In summary all beams loaded with timber posts resulted in some measure of post-flange 
deformation coupled with post deformation around the web of the beam and subsequent 
crushing. The failure load of the flange-post joint region appeared to be coupled to the 
thickness of the flange and strength of the post.  Eccentricity had minimal effect on the 
response with some reduction in failure load observed, but typically no more than 10%. 
Blocking increased the failure load, with some flange deformation observed to engage the 
blocking, but an overall reduction in flange deformation resulted in an increase in the 
flange-post joint capacity. 

2.5.3 Beams with Timber Posts and Timber Corbels Resulting in Corbel Crushing 

1253TPNBTCRE0 - Beam 12 

This set of beams had 2 timber corbels behind the corbel-flange of each beam.  This was 
intended to simulate sill beams, although usually a sand jack, blocks and wedges would be 
used between the sill beam and corbel.  For each beam in this section the load was applied 
axially through a timber post. In this beam, the load increased to around 100 kip then 
apparent inelastic deformation started to occur, as illustrated by Figure 2-31.  This 
apparent yielding was attributed to crushing of the corbels as well as bending of the 
corbel-flange of the beam as shown in Figure 2-32 shown after the completion of the 
experiment.  In this respect these experiments may not be quite like what would be 
observed in the field, as the sand jack and blocks may reduce the concentration of corbel 
deformation around the web of the beam, resulting in increased capacity in the corbels. 
The failure load was calculated at 131 kip, also corresponding to the observation of lime 
paint flaking on the corbel-flange of the beam.  Unlike when post crushing was observed, 
the load continued to increase after the corbels started to crush, therefore this limit state is 
much less catastrophic than one involving post crushing.  At 170 kip, there was significant 
cracking in the timber corbels. Soon after, the experiment was paused to remove some 
instruments then resumed. As the load reached 200 kip, bending in the post-flange was 
observed with flaking of the lime paint.  At the maximum load of 240 kip, the post, post-
flange, and corbel-flange all had significant deformation and yielding although the load 
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continued to increase. The experiment was terminated as the limit of instruments was 
reached. 

1253TPBTCRE0 - Beam 13 

In this experiment two 1 in. thick, 12 x 12 in. steel plates were used between the corbel-
flange and each timber corbel to simulate to the presence of jacks and wedges.  Blocking 
was also used between the beam flanges. The use of the plates at the corbels increased the 
failure load to 202 kip, compared to 131 kip for the previous beam.  At the failure load, the 
onset of crushing in the corbels was observed.  This is considered a more realistic 
representation of the actual conditions found in the field and corresponds to an average 
individual corbel failure load of 101 kip, within 9% of the 93 kip load measured during the 
component experiment. In this beam no corbel-flange bending was observed around the 
corbels. At a force of 260 kip, the onset of post crushing was observed and the load 
started to drop (Fig. 2-33). 

1490TPNBTCRE0 - Beam 1 

In this larger beam the configuration was similar to that for Beam 12.  There were no steel 
plates between the corbel-flange and corbels, which resulted in corbel-flange bending in 
conjunction with corbel crushing. The failure load was calculated at 234 kip close to the 
point where corbel-flange bending and flaking of the lime paint was observed at around 
240 kip. At this point the force-displacement curve started to flatten (Fig. 2-34).  The 
experiment was held to make observations at this level allowing the force to drop due to 
creep in the system, although this was regained as soon as the loading was reapplied.  At 
around 250 kip further bending of the corbel-flange was observed. The post-flange also 
exhibited some bending along with deformation of the post.  This behavior continued until 
an ultimate load of 356 kip was reached at which point the end of the post crushed. 

1490TPNBTCRE6 - Beam 4 

This was the same as the previous experiment except for an eccentricity between the post 
and beam of bf/6 (2.4 in.). This appeared to result in a more gradual transition between the 
elastic and inelastic deformation of the corbel.  The failure load was calculated to be 190 
kip, although Figure 2-35 shows that there was no clear transition to indicate inelastic 
behavior.  At around 250 kip flaking of the lime paint on due to bending in the corbel-
flange was observed. The post crushed shortly after, at a maximum load of 270 kip, with 
some post-flange bending also observed. 

Summary 

Corbel crushing typically occurred before post crushing and flange bending, although 
corbel crushing was not catastrophic and allowed an increase in forces leading to eventual 
complete failure due to post and post-flange failure.  Allowing bending of the corbel-
21
 



 

flange reduced the corbel capacity, although this is conservative, as in the field the sand 
jacks and blocks between the beam and corbel are likely to reduce stress concentrations in 
the corbel. 

2.5.4 	 Beams with Steel Posts and Three Timber Corbels Resulting in Corbel 
Crushing and Post Yielding 

1490SPNBTCRE0 - Beam 2 

In this section two beams were considered with steel posts.  For the first beam the post 
load was applied concentrically to the beam.  Three corbels were placed behind the beam, 
including one directly under where the load was applied and the other two centered 12 in. 
each side of the middle corbel. The force-displacement curve (Fig. 2-36) for this 
experiment was elastic (after initiating full contact of the various components) up to an 
observed load of around 250 kip. At this load, deformation of the corbels behind the beam 
began to be observed. The failure load was calculated at 292 kip as the stiffness 
decreased. Corbel-flange yielding was observed through flaking of the whitewash paint at 
330 kip as the load continued to increase.  At 400 kip corbel-flange yielding had 
progressed along the entire length of the beam.  At 475 kip some deformation of the post-
flange was observed with bending in the base plate of the steel post.  Yielding of the post-
flange though whitewash flaking was observed at this level.  The onset of buckling of the 
end of the post in line with the beam flange was also observed, as shown in Figure 2-37. 
The ultimate load was reached at 520 kip at which time the corbels where unable to 
maintain the load, while significant buckling of the post was also observed. 

1490SPNBTCRE6 - Beam 3 

In this experiment the load was applied eccentrically to the beam through the steel post. 
The force-displacement response (Fig. 2-38) was almost identical to that for the 
concentrically loaded beam.  The failure load was calculated to be 270 kip.  At 340 kip, 
flaking was observed in the corbel-flange. Flaking stretched across the length of the beam 
at 400 kip. The onset of localized post yielding was apparent at around 425 kip on one 
side of the post. The force continued to increase up to a force of 525 kip.  At the end of the 
experiment some localized web yielding was observed. 

Summary 

The strength of the steel posts appeared to the governed by localized yielding and 
crippling of the post where it bears onto the web of the beam. This is similar to yielding 
that may be observed in the web of beams when a concentrated load is applied to the 
beam. An eccentricity has little effect on the response of the post as it simply moves the 
yielding region to a new region of the post, still in line with the web of the beam.  As the 
end of the steel post is rigid, no flange bending is observed until after yielding and 
crippling of the post is observed.  The strength of the corbels in these experiments was 
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similar to those observed previously, with some reduction in strength due to bending of the 
corbel-flange. 

2.5.5 Beams with Rigid Patch Loads and No Corbels Resulting in Web Yielding 

1253NPNBNCRE0 - Beam 10 

As the timber and steel posts failed before significant deformation was observed in the 
web of the beams, rigid patch loads from a steel plate were applied to a series of beams to 
investigate critical web limit states.  All the beams in this series were laterally restrained to 
prevent lateral deformation of the post-flange.  This beam, an HP12x53, was one of the 
smallest sections, although it has the same size web as the W14x90.  The load was applied 
through the rigid 12 x 12 in. patch load as shown in Figure 2-4.  The force-displacement 
curve for this beam is shown in Figure 2-39. At 240 kip, the onset of flaking in the web 
was observed, although the failure load was not calculated until the force reached 370 kip. 
The maximum load was reached at 380 kip. At the failure load significant yielding of the 
web was observed along with an onset of lateral deformation in the web.  As the 
deformation increased beyond the maximum load and the load began to drop, the web 
started to buckle/ cripple as shown in Figure 2-40.  As this deformation occurs after 
significant yielding was observed, it was considered post-elastic buckling/crippling. 
There was no evidence of flange bending or yielding until significant deformation 
occurred in the web and was consistent with that required to allow deformation of the web. 

1253NPNBNCRE6 - Beam 11 

This is almost identical to the previous beam except that the load was applied 
eccentrically.  However, as the patch load was rigid, it was found the effect of the 
eccentricity was minimal. The failure load was calculated at 370 kip, identical to the 
previous beam. At the failure load, the onset of web yielding was observed.  The first 
yielding was observed near the center of the web indicating an onset of web buckling.  The 
maximum force was reached at 380 kip (Fig. 2-41) at which point buckling became 
evident. 

1473NPNBNCRE0 - Beam 9 

This was the next size larger beam with loading applied concentrically using the patch 
load as in the previous two beams. At 325 kip, the onset of web flaking was observed 
before it was observed that the upper lateral restraints were slipping resulting in a small 
lateral deformation of the post-flange.  The experiment was paused to tighten the restraints 
then resumed. The failure load was calculated at 417 kip.  The maximum load was 
reached at 440 kip (Fig. 2-42).  This load was potentially reduced due to the small lateral 
deformation, although comparisons with the following beam do not suggest this was 
significant. 

1473NPNBNCRE6 - Beam 8 
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Similar to the previous beam but with an eccentricity, the failure load was calculated at 
419 kip, almost identical to the previous beam.  The maximum force was reached at 480 
kip (Fig. 2-43). Web yielding followed  by post-elastic crippling/buckling was observed 
as in previous experiments. 

1490NPNBNCRE0 - Beam 6 

This was a concentrically loaded W14x90 beam and its response followed the pattern of 
the previous beams. Even though the web was relatively thinner compared to the flange, 
post-elastic buckling/crippling was observed.  At 410 kip the onset of web buckling was 
observed through flaking of the web, although the failure load was calculated at 457 kip. 
The force reached a maximum at 470 kip before going into a gradual decline as shown in 
Figure 2-44. 

1490NPNBNCRE6 - Beam 7 

As with the previous beams the eccentricity from the rigid patch load resulting in little 
change in response, in fact the loads in this beam were slightly larger than in the previous 
beam. At 430 kip, the onset of web flaking was observed.  The failure load was observed 
at 510 kip. The maximum load was reached at 530 kip (Fig. 2-45). 

Summary 

Web deformation for these beams where the flanges were laterally restrained to prevent 
lateral deformation of the flange were categorized by yielding followed by post-elastic 
buckling/crippling the web.  The effect of eccentricity from the rigid patch load was 
negligible. The yielding of the web occurred at larger forces than post crushing or 
yielding and flange bending observed in previous experiments. Beams with No Lateral 
Restraints Resulting in Possible Lateral Web Buckling 

1473TPNBSCNRE0 - Beam 29 

As falsework is not typically braced or stiffened, a series of beams without lateral 
restraints were considered. For these beams the loads were applied concentrically though 
a timber post.  As the load was applied to the beam the post-flange and end of the post 
started to deform. The failure load was calculated in the beam due to post and flange 
deformation at 300 kip. At 310 kip, flaking of the lime paint was observed on the post-
flange. A maximum load of 315 kip was reached at which point some flaking of the paint 
on the web was observed indicating web bending.  Despite some bending sudden lateral 
buckling was no observed. The load then dropped due to crushing of the post (Fig. 2-46). 
With no lateral restraints this beam essentially performed the same as the equivalent 
restrained beam (Beam 20). 

1473TPBSCNRE0 - Beam 30 
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This beam was the same as the previous except blocking was placed between the flanges. 
As a result it was expected that the load would be greater than in the previous beam, 
potentially inducing buckling in the beam.  However, due to an apparently weak post, the 
failure load for this beam was calculated at 275 kip, less than for the previous experiment. 
After initial crushing of the post, the failure load was maintained and increased slightly up 
to a maximum of 300 kip at a large deformation until eventually dropping, as shown in 
Figure 2-47. No web deformation was observed. 

1473TPNBSCNRE6 - Beam 31 

The load was applied eccentrically to this unstiffened beam through a timber post. The 
load increased up to a calculated failure load of 332 kip, around when the post failed, as 
shown in Figure 2-48. After the maximum load of 340 kip was reached web yielding was 
observed due to the orientation of the failed post fragments.  It also resulted in some flange 
bending. The force-displacement curve is shown in Figure 2-49. 

1473TPBSCNRE6 - Beam 32 

In this experiment the eccentrically loaded beam was also blocked.  The failure load in this 
beam was again much less than expected due to another relatively weak post. The failure 
load was calculated at 190 kip. The maximum load was reached at 195 kip. Flange 
bending and post crushing were observed, but no web bending was seen until the post 
became more heavily damaged and the load was redistributed into the side of the flange 
(Fig. 2-50). 

1490TPNBSCNRE0 - Beam 26 

Although heavier than the previous four beams, this beam had a thinner web and thicker 
flange, therefore was more susceptible to lateral buckling of the web.  The failure load was 
calculated to be 276 kip when there was a reduction in stiffness, although this appeared to 
be somewhat premature. The maximum load was reached at 310 kip at which point the 
post-flange suddenly deformed laterally through buckling of the web.  This can be seen 
from the sudden drop in load in Figure 2-51. The deformed shape of this beam is shown in 
Figure 2-52. No bending in the flange was observed during the experiment. 

1490TPBSCNRE0 - Beam 28 

This beam had the same configuration as the last but included blocking between the 
flanges. As a result, buckling was not observed in this beam and failure occurred due to 
flange bending and post crushing at a load of 360 kip.  The maximum force was reached at 
420 kip. There was no buckling of the beam indicating that blocking may have been 
effective at increased the buckling capacity.  As there was no buckling, Figure 2-53 shows 
that there was no sudden drop in load after failure as observed in the previous beam. 
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1490NPNBNCNRE0 - Beam 5 

This beam was similar to the Beam 27 except that the load was applied though a rigid 
patch load instead of the flexible timber post.  Despite being rigid the patch load had a 
small allowance for lateral deformation through tolerances in the slider.  As a result lateral 
buckling was also observed in this beam. The failure load was calculated at 320 kip, close 
to the maximum load of 330 kip.  In this beam the load did not drop as in the previous 
beam as the lateral deformation of the post was limited and thus did not allow a lateral 
deformation that resulted in a large reduction in the load.  The force displacement curve 
for this beam is shown in Figure 2-54. This beam shows that the lateral buckling was not 
just limited to timber posts but is possible for other types of posts. 

Summary 

This section showed that the HP14x73 beams with thicker webs were not susceptible to 
lateral buckling, however the W14x90 beams with thinner webs were susceptible when no 
lateral bracing or stiffeners are used in falsework beams.  The buckled mechanism is such 
that the entire length of the beam tends to deflect sideways unlike lateral torsional 
buckling in beams where part of the beam may buckle between braces through torsional as 
well as the lateral deformation of the flange. This limit state, where a long portion of the 
beam deflects laterally through buckling of the web is similar to that observed in 
falsework failure shown in Figure 1-4, therefore is a realistic limit state.  Comparison of 
Beams 27 and 28 indicated that blocking was effective at reducing the propensity of a 
beam to buckle laterally.  However, with limited data it is difficult to make conclusions 
about the effectiveness of blocking.  As there is no positive connection between the 
blocking and the flanges, unlike with a welded stiffener or bracing, the effectiveness of the 
blocking is questionable. Consequently, bracing or stiffeners are recommended for beams 
that are susceptible to buckling. 

2.6 Comparison of Failure Load with Load where Flaking is Observed 

For each of the beams, the observed load when flaking occurred on the beam flange, with 
flaking typically located initially at the edge of the fillet between the flange and web under 
the post is compared with the failure load based on the change in stiffness as previously 
defined. Figure 2-55 shows a comparison of the observed flaking load with the calculated 
failure load for the beams which failed due to post-flange bending and timber post 
crushing. The vertical axis has the observed load divided by the calculated failure load, 
while the horizontal axis gives the calculated failure load.  The different series represent 
different configurations, with and without blocking and with different eccentricities.  The 
different points in each series represent the different size beams.  With the steel posts, 
flaking was not observed in the beams until after the posts had already yielded and, thus, 
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FIGURE 2-14 Actuator force vs slider displacement for 1253TPNBSCRE0 - Beam 18
 

FIGURE 2-15 Flange bending and post deformation observed during loading of
 
1253TPNBSCRE0 - Beam 18
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FIGURE 2-16 Strain gages on beam close to where flaking of lime paint is first observed 
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FIGURE 2-17 Actuator force vs strain in two strain gages located close to the yield line 
location in 1253TPNBSCRE0 - Beam 18 
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FIGURE 2-18 Actuator force vs slider displacement for 1253TPBSCRE0 - Beam 19 
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FIGURE 2-19 Actuator force vs slider displacement for 1253TPNBSCRE12 - Beam 16 
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FIGURE 2-20 Actuator force vs slider displacement for 1253TPBSCRE12 - Beam 17 
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FIGURE 2-21 Actuator force vs slider displacement for 1253TPNBSCRE6 - Beam 14 
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FIGURE 2-22 Actuator force vs strain in four strain gages located close to the yield line 

locations in 1253TPNBSCRE6 - Beam 14
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FIGURE 2-23 Actuator force vs slider displacement for 1253TPBSCRE6 - Beam 15
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FIGURE 2-24 Actuator force vs slider displacement for 1473TPNBSCRE0 - Beam 20 
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FIGURE 2-25 Actuator force vs slider displacement for 1473TPBSCRE0 - Beam 21 
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FIGURE 2-26 Actuator force vs slider displacement for 1473TPNBSCRE6 - Beam 27 
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FIGURE 2-27 Actuator force vs slider displacement for 1473TPBSCRE0 - Beam 25 
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FIGURE 2-28 Actuator force vs slider displacement for 1490TPNBSCRE0 - Beam 22 
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FIGURE 2-29 Actuator force vs slider displacement for 1490TPBSCRE0 - Beam 23 
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FIGURE 2-30 Actuator force vs slider displacement for 1490TPNBSCRE0 - Beam 24 
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FIGURE 2-31 Actuator force vs slider displacement for 1253TPNBTCRE0 - Beam 12 
35
 



 

 

FIGURE 2-32 Corbel-flange bending, corbel crushing and post crushing after the 

completion of 1253TPNBTCRE0 - Beam 12
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FIGURE 2-33 Actuator force vs slider displacement for 1253TPBTCRE0 - Beam 13
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FIGURE 2-34 Actuator force vs slider displacement for 1490TPNBTCRE0 - Beam 1 
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FIGURE 2-35 Actuator force vs slider displacement for 1490TPNBTCRE6 - Beam 4 
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FIGURE 2-36 Actuator force vs slider displacement for 1490SPNBTCRE0 - Beam 2
 

FIGURE 2-37 Onset of yielding and buckling in the steel post for 1490SPNBTCRE0 - 

Beam 2
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FIGURE 2-38 Actuator force vs slider displacement for 1490SPNBTCRE6 - Beam 3 
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FIGURE 2-39 Actuator force vs slider displacement for 1253NPNBNCRE0 - Beam 10 
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FIGURE 2-40 Post-elastic buckling/crippling of the web in 1253NPNBNCRE0 - Beam 10 
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FIGURE 2-41 Actuator force vs slider displacement for 1253NPNBNCRE6 - Beam 11
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FIGURE 2-42 Actuator force vs slider displacement for 1473NPNBNCRE0 - Beam 9 
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FIGURE 2-43 Actuator force vs slider displacement for 1473NPNBNCRE6 - Beam 8 
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FIGURE 2-44 Actuator force vs slider displacement for 1490NPNBNCRE0 - Beam 6
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FIGURE 2-45 Actuator force vs slider displacement for 1490NPNBNCRE6 - Beam 7
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FIGURE 2-46 Actuator force vs slider displacement for 1473TPNBNCNRE0 - Beam 29
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FIGURE 2-47 Actuator force vs slider displacement for 1473TPBNCNRE0 - Beam 30
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FIGURE 2-48 Failure of post during experiment on unrestrained beam 

1473TPNBNCNRE6 - Beam 31
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FIGURE 2-49 Actuator force vs slider displacement for 1473TPNBNCNRE6 - Beam 31
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FIGURE 2-50 Actuator force vs slider displacement for 1473TPBNCNRE6 - Beam 32
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FIGURE 2-51 Actuator force vs slider displacement for 1490TPNBNCNRE0 - Beam 26
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FIGURE 2-52 Lateral Buckling of 1490TPNBNCNRE0 - Beam 26 
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FIGURE 2-53 Actuator force vs slider displacement for 1490TPBNCNRE0 - Beam 28
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FIGURE 2-54 Actuator force vs slider displacement for 1490NPNBNCNRE0 - Beam 5 

these are not included in the figure. There are only 12 points for 13 experiments with 
timber posts resulting post-flange bending failure as flaking was not observed at the 
appropriate time in one of the beams.  Figure 2-55 shows that the observed flaking and 
calculated failure load is different by no more than 13% for each beam, with an average 
difference of 2%.  The comparison therefore indicates that the estimated ultimate load, 
estimated based on a 50% reduction in stiffness, is similar to the load at which yielding is 
first observed and, thus, is an appropriately defined ultimate load.  

A similar plot is shown for the beams that resulted in corbel-flange bending and corbel 
crushing in Figure 2-56. This figure shows that the estimated failure load tends to be 
conservative by around 10-20% compared to the load where flaking is observed except for 
the smallest beam.  This is attributed to the corbel starting to crush before flange bending 
is observed. The definition of failure is still considered to be appropriate, although it is 
conservative with regards to observed inelastic behavior in the beam. 

A comparison of the observed flaking load and estimated failure load for the restrained 
beams with rigid patch loading resulting in web yielding is shown in Figure 2-57.  The 
observed flaking load is within 15% of the calculated failure load in all case with an 
average difference of 1%.  Therefore, the definition of failure is also appropriate for the 
beams with web yielding and post-elastic crippling or buckling. 
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FIGURE 2-55 Comparison of observed load when flaking occurred with calculated failure 
load from experiments with post-flange-post failure 
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load from experiments with web yielding failure 
49
 



50
 



 

SECTION 3
 
FINITE ELEMENT ANALYSIS OF FALSEWORK BEAMS
 

3.1 Overview 

In order to further investigate the critical failure modes of the falsework beams with posts 
and corbels, and expand the range of cases considered a series of finite element models 
were generated. The finite element models were calibrated to the experimental data for 
direct comparison of models with the experimental data.  These models are then used to 
check design equations, without the impact of material variability and other experimental 
factors affecting the comparisons. 

3.2 Properties of the Finite Element Models 

There were four groups of finite element models.  The first group used a 48 in. long post 
bearing against a 48 in. long section of beam to determine the localized flange bending 
capacity for a timber post patch load (Fig. 3-1a). The second group replaced the timber 
post with a section of 18 in. diameter, 3/8 in. thick steel pipe and a 1/2 in. base plate, which 
was assumed for use with the larger beams (Fig. 3-1b). In the third group, a rigid 12 x 12 
in. patch load was modeled on top of the beam to determine critical localized web yielding 
and crippling limit states (Fig. 3-1c). In the final group a 10 ft. long single or double 
stacked beam was modeled with a 10 ft. long post, to study lateral web buckling (Fig. 3-
1d). This length beam is considered a typical post spacing in bridge falsework.  These 
figures show the post bearing down onto a sill beam, although the system could be 
inverted for the connection region between a post and cap beam. 

HP12x53, HP14x73, HP12x89 and W14x90 beams were modeled with timber posts, like 
that shown in Figure 3-1a, and W14x90, HP14x117 and W14x120 beams are modeled 
with steel posts as shown in Figure 3-1b.  These beams encompassed the range of typical 
beam sizes used as cap and sill beams in Falsework. As these typical falsework beams had 
relatively thick webs, they did not allow a full range of web deformation to occur 
including the type of deformation observed in beams with thinner webs.  Thus a larger 
range of beams including a W12x26, W12x40, W12x53, W14x22, W14x30, W14x43, 
W14x61, W14x90, W14x132, HP12x53, HP14x73, HP14x89 and HP14x117 were 
considered with rigid patch loads. 

The beams, posts and blocking were modeled with linear brick elements in ABAQUS 
(Hibbett et al. 2005), meshed typically as shown in Figure 3-1.  The steel members were 
modeled with a plastic isotropic material using the expected yield strength of 55 ksi for the 
A572 Gr. 50 and A992 steel beams (almost equal to the 53.3 ksi average strength 
measured from coupon tests) and 46 ksi for the A500 Gr42 steel posts. 
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FIGURE 3-1 Finite element models for a) a timber post and beam, b) a steel post and 
beam, c) a beam with a rigid patch load and d) long double stacked beam and post 

From the component experiments on Posts 1 and 2 for the 11.5 in. square Douglas Fir 
timber posts, the average calculated nominal post strength was 2.7 ksi.  This was assumed 
as the yield stress in the finite element model and, in order to fit the force displacement 
curve, this was increased linearly by 20% up to 2 times the yield strain before being 
gradually reducing to zero at a strain of 10% to reflect the reduction in strength due to 
crushing. The elastic modulus was assumed to be 550 ksi, based on the average measured 
stiffness from experiments.  Only posts 1 and 2 were used to calibrate the finite element 
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models as Post 3 was considered atypical of the posts used during the sub-assembly 
experiments.  A finite element model of a timber post similar to that shown in Figure 3-1a, 
but without any beams or other elements was used to compare with the experimental data. 
The resulting force displacement curve for the post is shown, along with the experimental 
data for Posts 1 and 2, in Figure 3-2. The stiffness and failure load is shown to compare 
well to the experimental data. 

The 7.5 x 5.5 in. blocking elements were modeled with a 4.0 ksi yield stress and a 330 ksi 
elastic modulus, based on an average of the three component experiments.  After yielding 
it was assumed the stress would drop to zero at a strain of 10%.  The resulting force-
displacement curve for the blocking is shown in Figure 3-3 compared to the experiments. 
It is shown to approximate an average response for the three blocks. 

The 11.5 in. square corbels were modeled with and elasto-plastic model having an elastic 
modulus of 11 ksi and a yield stress of 0.39 ksi.  The yield stress was determined from a 
modified bearing area and is different from the ultimate bearing strength for the corbels 
used in Section 4, but results in a better correlation with the finite element analysis.  The 
resulting force displacement curve from a finite element model of the corbel compared to 
the component experiment is shown in Figure 3-4 for a 15 in. long rigid patch load on the 
corbel, similar to that used in the corbel experiment.  The experimental data matches the 
initial stiffness yield and post-yield stiffness of the finite element model. 
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FIGURE 3-2 Force-displacement curve for a finite element model of a timber post 
compared to the experimental data 
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FIGURE 3-3 Force-displacement curve for a finite element model of a timber block 
compared to the experimental data 
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FIGURE 3-4 Force-displacement curve for a finite element model of a timber corbel 
compared to the component experimental 
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Loads were applied to the top of the post or patch load in displacement control.  The 
interfaces between the beams and other components were modeled with contact surfaces. 
The nodes under the beams were completely restrained, while at the free end of the post 
the nodes were restrained to allow axial deformation only.  Both flanges at the ends of the 
beam were also restrained to prevent out-of-plane deformation of the flanges except in the 
beams where the post-flange restraints were removed to investigate lateral web buckling. 

For each configuration considered, the axial force in the post or force applied to the patch 
load is plotted against the axial displacement at the free end of the post or patch load. For 
each experiment the failure load is defined from the force displacement curve at a point 
where the tangential stiffness reduced to 50% of the initial stiffness, as in the experiments. 

3.3 Comparisons between the Experimental and Finite Element Results 

3.3.1 Overview 

Comparisons between the experimental and finite element results are divided into three 
categories: 

• Post-flange bending and post crushing or yielding; 

• Corbel-flange bending with corbel crushing when timber corbels were used; 

• Web yielding, crippling or lateral web buckling. 

Each of these is discussed below. 

3.3.2 Post-flange Bending - Post Crushing Capacity 

A typical force-displacement curve for one of the beams exhibiting post-flange bending 
and post crushing the HP12x53 beam concentrically loaded with a timber post exhibiting 
failure by post-flange bending and post crushing is shown in Figure 3-5. The 
displacement in the experimental data is offset in order to have an extrapolation of the 
elastic stiffness through the origin, removing the observed stiffening that occurred as the 
gaps between the various components in the sub-assembly experiments were closed.  The 
finite element curve matches the experimental data reasonably well.  The initial stiffness 
close to that observed, although, as localized yielding occurred in the finite element model 
a reduction of stiffness occurred that began earlier than observed in this particular 
experiment. Consequently, the failure load was calculated to be 12% less in the finite 
element model than the experimental model.  In the experiment the force in the system 
appeared to reduce more quickly than in the finite element model, suggesting that perhaps 
the post elastic stiffness of the post should be reduced.  However, there is a relatively large 
variability in response between the different experiments, as observed in Section 2, with 
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other experiments exhibited a more gradual post-elastic reduction in forces.  Furthermore, 
the response after calculation of the failure load is of minimal consequence as the failure 
load is the critical factor in determining the performance of the various assemblies.  Thus 
the post-elastic behavior is considered acceptable. 

A similar figure is shown for the concentrically loaded HP12x53 with blocking between 
the flanges in Figure 3-6. In this case the failure load from the finite element model is 
19% greater than the experimental failure load.  This could be attributed to a number of 
factors, such as the post or blocks in the experiment being stronger than assumed in the 
finite element model.  Despite this, the finite element response, particularly in initial 
stiffness, compared reasonably well with the experimental response. 

The failure load from the experiments is compared to the failure load from the finite 
element models in Figure 3-7. The figure shows that for the different configurations 
exhibiting flange-post failure, the load from the finite element analysis is between 76% 
and 119% of the experimental load, with an average of 96%.  It appeared that the strength 
of unblocked beams was conservatively predicted by the finite element model, by an 
average of 14%, while the capacity of the blocked beams was over predicted by an 
average of 7%. This is consistent with that observed by the force-displacement curves 
(Figs. 3-5 and 3-6), suggesting an over-prediction of the blocking strength and under 
prediction of the post and beam strength. This variability is attributed primarily to the 
variability in the capacity of the different posts and blocking, which is largely 
unavoidable. Overall, there is good correlation between the experimental and finite 
element results.  The beams with steel posts could not be compared directly to the 
experimental data as the failure load was dominated by the corbel response in the 
experiments.  However, the failure loads calculated from the finite element models were at 
around the loads where yielding was observed experimentally in the posts. 

3.3.3 Corbel-flange Bending - Corbel Crushing 

Finite element models for three beams with timber posts and two timber corbels, and two 
beams with steel posts and three timber corbels were compared to the experimental 
results. A typical force-displacement curve for one of the beams exhibiting corbel-flange 
bending and corbel crushing when corbels were placed behind the beams is shown in 
Figure 3-8. This figure, for the concentrically loaded HP12x53 beam, shows good 
correlation between the finite element analysis and experimental data, after the removal of 
initial stiffening that occurred as the gaps closed between the various components in the 
sub-assembly.  Consequently, the failure load from the finite element model was 
calculated to be within 4% of that from the experiment.  This is typical of other beams 
with corbels, although the finite element model tends to be more conservative for these 
other beams. 

The failure load from the experiments for all the beams with corbels is compared to the 
failure load from the finite element models in Figure 3-9.  The figure shows that for the 
different configurations exhibiting flange-corbel failure, the load from the finite element 
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FIGURE 3-5 Force-displacement curve for finite element model of HP12x53 beam and 
timber post exhibiting flange bending and post crushing 
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FIGURE 3-7 Failure load from finite element analysis compared with experimental 
failure load for beams exhibiting flange-post failure 

analysis is between 76% and 104% of the experimental load, with an average of 87%. 
Thus the models were generally conservative, with the variation attributed to the 
difference in corbel strengths. 

3.3.4 Web Yielding and Lateral Buckling 

Finite element models for six different beams with rigid patch loads exhibiting web 
yielding followed by post-elastic crippling or buckling were compared to the 
experiments.  The finite element and experimental force-displacement curves for the 
HP12x53 beam with a concentric rigid patch load are compared in Figure 3-10.  This 
comparison shows that the shape of the force-displacement curves are similar, although 
the initial stiffness and maximum load reached in the finite element model is much greater 
than measured during experiments.  The lower stiffness in the experiments is attributed to 
the slider and patch loading assembly which had some flexibility, that becomes much 
more apparent in this very rigid setup.  Despite the error in elastic stiffness it does not 
greatly affect the yielding of the beam.  The calculated failure load from the finite element 
model is within 5% of that from the experiment.  Similar observations are made when 
comparing the other beams where web yielding occurred. 

In addition to the web yielding cases, finite element models with timber posts and 
unrestrained post-flanges were developed to simulate lateral buckling for the two W14x90 
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FIGURE 3-8 Force-displacement curve for finite element model of HP12x53 beam with 
corbels and posts exhibiting corbel-flange bending and corbel crushing 
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FIGURE 3-9 Failure load from finite element analysis compared with experimental 
failure load for beams exhibiting flange-corbel failure 
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FIGURE 3-10 Force-displacement curve for the FE model of the HP12x53 beam with a 
concentric rigid patch load exhibiting web yielding and post-elastic buckling/crippling 
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FIGURE 3-12 Failure load from finite element analysis compared with experimental 
failure load for beams exhibiting web yielding and lateral buckling 

beams where this was observed.  A typical force-displacement curve for one of these 
beams is shown in Figure 3-11.  The drop in load is not as sudden in the finite element 
model as observed in the experiment, with a more gradual inelastic deformation observed. 
Despite this, the initial stiffness compares well and the maximum load and calculated 
failure loads compare to with 1% between the finite element analysis and experiment. 

The failure load from the experiments for all the beams with web failures are shown in 
Figure 3-12. The figure shows that the load from the finite element analysis is between 
80% and 106% of the experimental load, with an average of 97%. Thus the models 
compared well with the experimental results. 

3.4 Other Finite Element Analysis Results 

3.4.1 Other Configurations not Considered Experimentally 

A larger range of beam sizes, combinations with timber and steel posts, blocking, beam 
and post lengths and restraints were considered with finite element models than 
considered in the experiments.  The additional analyses are discussed more extensively 
when comparing the failure loads with calculated limit states in the following section. 
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3.4.2 Prevention of Lateral Buckling 

Lateral torsional buckling cannot be prevented by adding stiffeners to a beam as the 
torsional deformation is still able to occur.  However pure lateral buckling, where the 
deformation is due to bending in the web not torsion of the section, can be prevented by 
using web stiffeners.  When stiffeners, with a thickness equal to the thickness of the 
flange, are added to the beam directly under the post load location, as shown in Figure 3-
13, no buckling of the beam is observed.  This is due to an increase in the radius of 
gyration of the web which can be easily calculated.  

Alternatively, lateral bracing could also be used to prevent the lateral buckling of the web. 
The advantage of using lateral bracing is that it will also prevent any torsional buckling 
modes in the beam, which may be allowed if the top of the beam and bottom of the beam 
are allowed to rotate due to inadequate stiffness in the supports.  This limit state is not 
considered in this study as it requires investigation of a complete system.  However, from 
the observed deformation in past falsework failures, some deformation of the web is 
observed with the beam instabilities, therefore prevention of the web deformation will 
prevent instabilities in most cases. 

FIGURE 3-13 Finite element model of beam with stiffener to prevent lateral buckling 

3.4.3 Effect of Eccentricity 

The experimental data showed that eccentricity between the centroids of the flange and 
post equal to a maximum of 1/6th of the flange width, resulted in some reduction in the 
flange-post capacity, typically around 10-15% when using a timber post.  With a steel 
post, each eccentric case resulted in an almost identical flange-post capacity to the 
concentric case. To further study the effect of an eccentricity on the failure load, additional 
finite element analyses were performed.  Ten foot lengths of four different beams were 
modelled with 10 ft long posts and different eccentricities.  The longer beams and posts 
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were considered more typical of those in bridge falsework.  The calculated normalized 
failure load of the beams is plotted with respect to eccentricity, where the eccentricity is 
given in terms of a multiple of the web thickness, in Figure 3-14.  Two of beams were 
smaller than typically used in falsework but were studied in order to determine the effect 
of eccentricities on beams with more slender webs where lateral web buckling is the 
critical failure mode. The figure shows that for cases which failed though lateral buckling 
or flange bending, there was around a 17 to 25% reduction in the capacity at an 
eccentricity of 6 times the web thickness.  To ensure that the capacity is reduced by no 
more than 10%, the eccentricity should be limited to 3 times the web thickness.  This is 
considered an appropriate maximum limit to be used in design.  The reductions in failure 
load observed in this figure are consistent with those observed in the experiments. 
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SECTION 4
 
PREDICTION OF THE FLANGE BENDING, POST AND CORBEL CAPACITIES 

4.1 Overview 

The experimental and finite element models showed that either a combination of flange 
bending and post deformation or corbel-flange bending and corbel crushing (for sill 
beams) is likely to govern the design of cap and sill beams in falsework.  Formulations are 
developed in this chapter to determine appropriate methodologies for predicting the 
flange-post joint capacity, with a timber or steel post, and flange-corbel capacity. 

4.2 Post-flange Bending Limit State 

From a yield line solution by Graham et al. (1959), the ultimate load that can be carried by 
a column flange, Rn, due to a tensile line load from an adjoining beam flange carrying a 
tension or compression force is given by (AISC 2005):

Rn = 6.25tf
2Fyf ...4.1 

where: tf is the thickness of the flange and Fyf is the minimum specified yield stress of the 
flange. Another form of this equation was developed using yield line analysis by Terry 
and Easterling (2000) for corbel-flange bending from bearing of perpendicular beams 
directly on the flange of a main beam in buildings.  That equation used an appropriate 
yield line pattern for the new application, resulting in good agreement with experimental 
results. An adapted mechanism can be used to calculate the ultimate load for flange 
bending from a post patch load on a falsework sill or cap beam.  The resulting ultimate 
load for beam flange bending, Rf1, is given by:

Rf1 = β1tf
2Fyf ...4.2 

where: β1 is determined from a yield line analysis.  For post loading, assuming a patch 
load with dimensions, bp and dp, as well as the yield line pattern and a uniform pressure, 
as shown in Figure 4-1, equating the internal and external virtual work for the patch load 
gives an expression for β1 equal to:

b dpbfeff⎛ p 4 2 ⎞β1 = --------------- --------- + -------------- + ----------- ...4.32 ⎝ sin2θ tanθ⎠bfeff 2bpeff 

where: α is the angle of the yield line shown in Figure 4-1, bfeff is the effective width of 
the flange (shown in Fig. 4-1) given by: 
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FIGURE 4-1 Yield line pattern on beams for a post patch load assuming a uniform stress 
distribution in the post 

bf tf= ---- – k1 – --- ...4.4bfeff 2 2 

where: k1 is the distance from the center of the web to the edge of the fillet and bf is the 
width of the flange. The effective width of the post, bpeff, is given by: 

bp tfbpeff = ----- – k1 – --- ...4.52 2 

The expression for β1 can be minimized with respect to θ giving a minimum value at angle 
of 55 degrees. However, assuming an angle of 45 degrees gives a result for the last two 
terms of Equation 4.3 that is within 6% of the minimum value, therefore θ is assumed to 
equal 45 degrees, allowing Equation 4.3 to simplify to: 
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bpbfeff⎛ dp ⎞β1 =	 --------------- --------- + 6 . ...4.62bpeff ⎝bfeff ⎠ 

Note that if dp tends to zero, as for a line load, bp is equal to bf and therefore bpeff is equal 
to bfeff, and bfeff is assumed to be 0.96 bf/2, then β1 simplifies to 6.25 as in Equation 4.1. 
For typical falsework applications, where nominal 12 x 12 in. posts are used with actual 
dimensions, bp and tp, equal to 11.5 in., the values of β1, for different typical beam sizes 
used in bridge falsework, are given in Table 4-1. The values of β1 range from 10.9 to 18.1 
for the different beam sizes considered.  These are all greater than 6.25, which is to be 
expected. In order to simplify the calculation of flange bending capacity, a constant value 
of β1 = 11 would be generally conservative for all cases considered. 

TABLE 4-1 β1 values for beams assuming uniform and triangular stress distributions and 
11.5 in. square patch load 

Section HP12x53 HP14x73 HP14x89 W14x90 HP14x117 W14x120 
Uniform 10.9 13.1 13.6 16.2 14.9 18.1 
Triangular 20.1 24.4 26.1 35.3 29.9 41.9 

Analyses show that, before crushing of the post occurs, a uniform stress distribution in the 
post is conservative for many beams, particular those with smaller flanges, as post stresses 
are concentrated around the web of the beam. Therefore, a new expression is developed 
assuming a triangular stress distribution (Fig. 4-2) instead of the uniform stress 
distribution. The resulting expression for β1 is:

3b2
pbfeff⎛ dp ⎞β1 =	 ------------------ --------- + 6 ...4.73 ⎝ ⎠bfeff8bpeff 

The value of β1 for the different beam sizes assuming the triangular stress distribution is 
given in Table 4-1. The values range from 20.1 to 41.9, indicating an ultimate load that is 
approximately twice that for the assumed uniform distribution.  It is noted that the value 
for the heaviest section considered based on the uniform stress distribution (18.1) is close 
to the β1 value for the lightest section considered based on the triangular stress distribution 
(20.1). Before the timber post starts to fail locally, it is expected that the for the heavier 
sections a uniform distribution is most appropriate as the flanges will deflect a relatively 
small amount allowing the stresses to be uniformly distributed in the post, while for the 
lighter sections the flanges will deflect a greater amount making the triangular stress 
distribution more appropriate. Thus β1 converges to a value of between 18 and 20. 
Different values for β1 used in determining flange bending capacity are compared with the 
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FIGURE 4-2 Cross section of a beam for a patch load assuming a triangular stress 
distribution in the post 

experimental data and finite element analysis in Section 4.9.  Once the timber post starts to 
crush the stress distribution changes, therefore if a higher β1 value is considered it should 
only be used when the interaction with post crushing is also considered.   

4.3 Post Compression Strength in the Flange-Post Connection Region 

The strength of a timber post in compression is defined based on NDS specifications. To 
be consistent with the other limit states the NDS LRFD specifications (AFPA 1996) are 
used, although, the ASD specifications (AFPA 2001) are equivalent.  In the flange-post 
connection region the compressive strength, Rp, is considered over a short length of the 
post and is given by:

R = F 'A  ...4.8p c p 

where: Ap is the nominal cross sectional area of the post and Fc' is the nominal stress in the 
post after modification factors are applied for moisture content, temperature, size, 
preservative treatment, fire-retardant treatment and column stability (AFPA 1996).  As the 
compression capacity in the flange-post joint region is considered over a short length of 
post the column stability factor in this calculation is assumed to equal 1.0.  Note that in the 
ASD specifications this is equivalent to the bearing strength of the column, although in the 
LRFD specifications the bearing strength is distinct from the compression strength.  For 
consistency between the two specifications the compression strength based on a short 
column length is assumed. Stability of the full length of the column should be considered 
as a separate limit state in the design of the column.   
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As a steel post is axially much more rigid than a timber post, it does not result in an 
approximately even distribution of stresses in the end of the post when bearing against a 
beam with a flexible flange.  Consequently, it is recommended that the localized axial 
capacity is calculated using the effective post bearing area described in Section 4.5. 

4.4 Interaction between Flange Bending and Post Compression Limit States 

The force at which bending occurs in the beam flange is related to that for crushing of the 
post where in contact with the beam.  The flange will not bend unless the post deforms to 
accommodate the bending and, conversely, the compression strength of the post will be 
reduced, if flange bending occurs.  Therefore, it is helpful to consider an interaction 
between the flange bending and post crushing limit states. A number of interaction 
equations have been proposed for different applications, such as for interaction between 
axial loads and bending moments in the design of columns, or for interaction between 
bending and torsional moments in members (AISC 2005).  For the interaction between 
post crushing and flange bending an elliptical relationship is assumed, such that: 

RRu 2 u 2
⎛ ⎞ ⎛ ⎞-------- + ------ ≤ 1 ...4.9⎝ ⎠  R⎝ ⎠Rf1 p 

where: Ru is the applied axial load in the post.  The application of this equation and 
comparisons to experimental data and finite element models is demonstrated later in the 
report. 

4.5 Effective Post Bearing Area for Calculating Flange-Post Capacity 

An alternative to the interaction equation is considered which focuses on the post crushing 
of yielding in determining the flange-post capacity.  For this model an effective cross 
sectional area of the post is considered to carry the axial load, as shown in Figure 4-3, 
calculated using similar assumptions to those used for the web yielding equation in the 
AISC specifications (AISC 2005).  The effective area of the post is determined by the 
width of the post effective in carrying the load multiplied by the thickness of the post 
within this width. An equation for the capacity of a timber post, Rp, is subsequently given 
by: 

R = (α + 2k1)d F ' ...4.10p tf p c 

where: α is constant which depends on the slope of the stress gradient assumed through 
the flange, which will be determined using the experimental data and finite element 
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FIGURE 4-3 Effective area of a) timber post and b) steel post for calculation of ultimate 
post load 

analysis, Fc' is the nominal compressive stress perpendicular to the grain for a short length 
of post and the other variables are as previously defined. A similar equation for the 
capacity of a steel post is given by: 

R = (α(tf + t ) + 2k1)2t F ...4.11 p ep p yp 

where: tep is the thickness of the end plate of the post, tp is the wall thickness of the round 
hollow steel section and Fyp is the minimum specified yield stress of the post. The 2tp 
allows for the transfer of axial load on two sides of the round hollow steel section. 

4.6 Corbel-flange Bending Limit State 

Similar to the relationship between the capacity of the post-flange and post, the capacity of 
the corbel-flange and corbels are also related.  In the experiments and finite element 
analysis corbel-flange bending was observed in the beams as the corbels started to crush. 
However, the experiments were not representative of typical falsework as there are usually 
blocks, wedges and sand jacks between the sill beam and timber corbel.  With these 
components it is difficult to predict the stress distribution that would result on the corbel-
flange of the beam and interaction between the beam and corbels would be minimal. 
Thus, the best approach is to treat the two as independent and use conservative 
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assumptions with respect to corbel-flange bending and corbel crushing, then check for 
both cases.  This assumes that any elements between the beam and corbel have the 
required capacity for a continuous transfer of load. 

A similar methodology to that used in developing the flange bending equation for the 
post-flange can also be used for the corbel-flange where the beams bear onto the corbels 
through sand jacks, blocks and wedges. The yield line pattern shown in Figure 4-4 is 
assumed along with a uniform stress distribution on the flange from the corbels.  The 
resulting ultimate load for beam flange bending, Rf2, is given by:

Rf2 = β2tf
2Fyf ...4.12 

where: β2 is determined from a yield line analysis.  Assuming a uniform loading in the 
shaded area and yield line pattern, as shown in Figure 4-4, equating the internal and 
external virtual work for the patch load gives an expression for β2 equal to:

bf ⎛bc + sc 4 2 ⎞β2 = ------------- ---------------- + -------------- + ----------- ...4.13⎝ sin 2θ tanθ⎠2bfeff bfeff 

where: θ is the angle of the yield line shown in Figure 4-4, bfeff is the effective width of 
the flange (shown in Fig. 4-4) given by equation 4.4, bc is the width of each corbel and sc 
is the spacing of the outermost corbels in a group associated with each post.  The 
expression for β2 can be minimized with respect to θ, although as with the post-flange an 
angle of 45 degrees gives a result for the last two terms of Equation 4.13 that is within 6% 
of the minimum value, therefore θ is assumed to equal 45 degrees, allowing Equation 4.13 
to simplify to: 

FIGURE 4-4 Yield line pattern on corbel-flange of sill beam due to reaction from the 
corbels 
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TABLE 4-2  β2 values for beams assuming uniform stress distributions, 11.5 in. wide 
corbels and a spacing between corbels of 24 in. 

Section HP12x53 HP14x73 HP14x89 W14x90 HP14x117 W14x120 
Uniform Stress 16.2 13.9 14.2 16.6 14.9 17.5 

b + sbf ⎛ c c ⎞β2 = ------------- ---------------- + 6 ...4.14⎝ ⎠2bfeff bfeff 

For typical falsework applications, where nominal 12 x 12 in. corbels are used with the 
actual dimension, bc, equal to 11.5 in., and the spacing of the corbels is 24 in. the value of 
β2 for different typical beam sizes used in bridge falsework are given in Table 4-2.  The 
values of β2 range from 13.9 to 17.5 for the different beam sizes considered. A constant 
value of 14 could be assumed and would be within 20% for all values while at the lower 
end of the range. This would be conservative for all beams where the spacing of the 
outmost corbels is 24 in. or greater.  Where other corbel spacings are used, and greater 
accuracy is desired, Equation 4.14 could be used to calculate an alternative value for β2. 
Unlike for the post-flange, a triangular stress distribution is not considered for the corbel 
as the uniform stress distribution is conservative and there is more uncertainty in the 
properties of the applied load due to the elements including the sand jacks, wedges and 
blocks located between the corbel and the sill beam, as is further explained in Section 
4.9.3. 

4.7 Corbel Strength 

The strength of a corbel in compression is defined based on the strength of timber 
perpendicular to the grain and the bearing area between the beam and corbel.  Thus the 
capacity, Rc, is given by:

Rc = Fc⊥'Abg ...4.15 

where: Abg is the bearing area and F '  is the nominal stress after modification factors are c⊥ 

for moisture content and other conditions (AFPA 1996). 
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4.8 Strength of Blocking 

Generally timber blocks sized between 4 x 4 in. are 6 x 8 in. are used to increase the beam-
post joint in falsework if deemed necessary.  The capacity of these members can be 
calculated based on the axial compression capacity of a short timber member.  However, 
comparison with experimental and analytical studies to follow show that the full capacity 
of the blocking is generally not effective, particularly for a steel post, thus the capacity of 
the timber blocking, Pb, can be given by:

Pb = γF 'Ab	 ...4.16c

where: γ is the blocking effectiveness factor, Fc' is the nominal stress in the block after 
modification factors are applied (AFPA 1996) and Ab is the combined cross sectional area 
of the blocking on both sides of the web. 

4.9 Comparison of Calculated Strengths with Finite Element Analysis 

4.9.1 	Capacity of Post-flange and Post for the Concentrically Loaded Unblocked 
Beams 

The failure loads from the finite element models, described in Section 3, were compared 
with the calculated capacity using the different equations described above.  Firstly, just the 
concentrically loaded, unblocked beams are considered. In calculating the capacity of the 
beams and posts, expected strengths based on 55 ksi yield stress for the steel beams, 46 ksi 
yield for the steel posts, and strengths based on component experiments for the timber 
posts (2.7 ksi) and blocking (4.0 ksi).  The calculated flange bending capacity (Eq. 4.2), as 
a ratio of the capacity calculated from the finite element analysis for the different size 
concentrically loaded beams, is plotted in Figure 4-5.  The flange bending capacity was 
calculated using three different methods for calculating β, 1) using Equation 4.6 assuming 
a uniform stress distribution from the patch load, 2) using Equation 4.7 assuming a 
triangular stress distribution, 3) assuming a constant value of   β = 11 as a conservative 
estimate for an assumed uniform stress distribution and 4) assuming a constant value of   β 
= 18, based on convergence of β from the uniform stress distribution for the largest beam 
and the triangular stress distribution for the smallest beam.  In Figure 4-5, HP12x53, 
HP14x73, HP12x89 and W14x90 beams are modeled with timber posts and W14x90, 
HP14x117 and W14x120 beams are modeled with steel posts.  In calculating the flange 
bending capacity with the steel post, the post was assumed to have an effective depth, dp, 
(Fig. 4-1) equal to the diameter of the post (18 in.) and effective width, bp, equal to the 
width of the flange. The capacity of the beams with timber posts are shown with the 
shaded markers, while the beams with steel posts are shown with unshaded markers. 

Figure 4-5 shows that the calculated capacity of the flanges for the smallest beams is 
conservative compared to the failure load calculated from the finite element analysis, 
while for the larger beams the calculated capacity is unconservative, regardless of the 
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FIGURE 4-5 Comparison of flange bending capacity with failure load from the finite 
element models for different beams 
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FIGURE 4-6 Comparison of post capacity for a short length of post with failure load from 
the finite element models for different beams 
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FIGURE 4-7 Calculated flange-post capacity a) using the minimum of the flange bending 
strength with β=11 and post strength and b) using the interaction equation between flange 

bending strength with β=18 and post strength, compared to failure load from the finite 
element models for different beams 

method for calculating β. Therefore, the flange bending capacity calculations alone did 
not give a good estimate of the capacity of the flange-post connection region as the post 
strength also needs to be considered. 

The nominal axial capacity for a short length of post (Eq. 4.8) is shown in Figure 4-6, as a 
ratio of the capacity of the beam-post connection region for the different beams from finite 
element analysis.  The figure shows that the calculated capacity of the post in all cases is 
greater than the capacity of the beam-post connection region indicating that the post 
strength alone also does not give a good estimate of the flange-post connection region 
capacity. 

When Equation 4.9 is used to model the interaction between the post capacity and flange 
capacity, with the flange capacity calculated assuming a constant value for β equal to 18, 
Figure 4-7 shows that estimated capacity of the beams is much closer to the failure load 
from the finite element analysis, particularly for the timber post.  The estimate was 
between 80% and 103% of the ultimate capacity from the finite element analysis for the 
timber post.  When this is compared to the minimum of the flange strength assuming a 
value of b equal to 11 (conservative value assuming a uniform stress distribution) and post 
strength, the interaction equation is shown to be more accurate with the timber post. 
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However, the minimum of the flange and post strength is generally conservative and only 
unconservative by 9% in the worst case with the timber post.  Therefore the use of this 
more simplified method may be justified and is further investigated in following sections. 

Neither of the above methods were conservative or accurate with the steel post.  This is 
attributed to the high axial stiffness of the steel post which does not allow the end of the 
post to deform as for the timber post. 

As an alternative to the interaction equation, the ultimate capacity of the beam-post joint 
region is calculated using the effective bearing area formulation (Eqs. 4.10 and 4.11).  A 
value of α = 5 is assumed, based on the 2.5:1 stress gradient assumed for web yielding in 
beam column connections by the AISC specifications (AISC 2005), with the resulting 
capacities compared to the finite element analysis given in Figure 4-8 for the different 
beam-post regions. This figure shows that with the timber post the method is excessively 
conservative with an estimated capacity of between 54% and 70% of the capacity from the 
finite element analysis.  While it may be possible to adjust the α value to increase the 
accuracy in calculating the capacity of the beam-post joint region with a timber post using 
this method, it is uncertain how different ratios of beam and post stiffness and strength 
will affect this value.  Therefore, the flange bending models are considered more 
appropriate than the bearing area model when using a timber post.  For the steel post, the 
bearing area method is more accurate but still conservative, with capacities between 84% 
and 95% of the capacity from the finite element analysis.  The effective bearing area 
method is therefore more effective than the flange bending methods with the steel post.  

4.9.2 Effect of Eccentricity and Blocking on the Capacity of the Post-flange and Post 

As the previous section showed two possible methods, were most suitable for calculating 
the capacity of the concentrically loaded, unblocked beam with a timber post, these are 
considered for calculating the capacity of beams with blocking and eccentricities between 
the centroids of the beam and post. Where blocking is used, the blocking capacity from 
Equation 4.16, assuming the blocking is fully effective (γ = 1.0), is added to be flange 
capacity to give the blocked flange capacity which was substituted for the flange capacity 
in the interaction equation. It is assumed that an eccentricity has little effect and thus the 
same methodology is used when an eccentricity of up to 1/6th of the flange thickness is 
present. 

A comparison of the calculated capacity of the flange-post joint region based on the 
interaction equation (Eq. 4.9) with the failure load from finite element analyses is shown 
in Figure 4-9 for beams with timber posts. The same four beam sections as those used 
previously with timber posts are assumed.  The figure shows good correlation between the 
calculated capacity and the finite element models, with a calculated capacity of between 
80% and 105% of the capacity calculated from the finite element model, with just two 
exceptions. These exceptions are for the larger beams with a large eccentricity, where the 
calculated capacity is up to 119% of that from the finite element model.  This level of 
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FIGURE 4-8 Comparison of calculated flange-post capacity using effective post bearing 
area with failure load from the finite element models for different beams 
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FIGURE 4-9 Comparison of calculated flange-timber post capacity using interaction 
equation with finite element failure load for beams with blocking and eccentricities 
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FIGURE 4-10 Comparison of calculated flange-timber post capacity using minimum of 
flange (β=11) and post strength with finite element failure load for beams with blocking 

and eccentricities 

eccentricity is unlikely to occur in a real situation, therefore these cases are not of 
particular concern.  Furthermore, when appropriate factors and nominal strengths are used 
in design instead of expected strengths, then even these cases will be conservative.  In 
practice the eccentricity should be minimized, but at worse limited to 3 times the web 
thickness as discussed in Section 3. This corresponds to an eccentricity of typically 
around one half of the maximum eccentricity assumed in these analyses.  Thus, the 
calculated capacity based on the interaction equation appears to be relatively accurate and 
generally conservative for all cases including those with timber blocking. 

As an alternative, the maximum of the flange capacity, assuming β = 11 for a uniform 
stress distribution, and the post capacity was calculated for cases with blocking and 
eccentricities as given in Figure 4-10. This figure showed a slightly greater variability in 
the estimated capacities compared to the finite element model, however the estimated 
capacities are generally conservative and acceptable.  As with the interaction equation, the 
configurations with the largest eccentricities were most unconservative, although these 
eccentricities are unlikely in practice and limited based on web limit states described in 
the following section. Therefore this simplified method is considered acceptable, 
although the interaction method is considered to give greater accuracy. 
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FIGURE 4-11 Comparison of calculated steel post capacity using effective yielding area 
with finite element failure load for beams with blocking and eccentricities 

With the steel posts the ultimate capacity of the flange-post joint region is calculated using 
the effective bearing area method (Eq. 4.11). As the stiffness of the post is greater than the 
stiffness of the blocking, the effectiveness of the blocking is reduced to an assumed 30% 
(γ = 0.3). While the blocking could be loaded further and the force carried by the joint 
would continue to increase, significant flange bending and post yielding would occur 
resulting in significant permanent deformations in both.  Thus, the effectiveness of timber 
blocking with a steel post is limited.  Comparisons between the calculated capacity using 
the effective post bearing area and effective blocking capacity (Eqs. 4 and 5) and the finite 
element analyses are shown in Figure 4-11.  The method is shown to be accurate and 
generally conservative, with calculated capacities between 81% and 105% of the those 
from the finite element model.  The use of a 30% effectiveness for the timber blocking 
gives a ratio of calculated to finite element capacity with the timber blocking similar to 
that without the timber blocking. Any more and the calculated capacity with blocking 
capacity would tend to be unconservative. 

4.9.3 Capacity of the Corbel-flange and Corbels 

The strength of the corbel-flange and corbels is considered to be the lesser of Equation 
4.12 and 4.15. From the component experiment on the timber corbel at the failure load 
and using the bearing area between the patch load and corbel (11.5 x 15 in.), results in a 
bearing stress equal to 0.54 ksi.  Using this value, the calculated bearing capacity of the 
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FIGURE 4-12 Comparison of calculated corbel capacity with finite element failure load 
for beams with corbel failures 

corbels, using Equation 4.15 for different size beams, is compared to the failure load from 
the finite element models where corbel failure was observed in Figure 4-12.  The 
calculated ultimate load due to corbel-flange bending, using Equation 4.12 and assuming 
β2 = 14, is also compared to the finite element failure loads in this figure.  It shows that 
the corbel-flange capacity is greater than the failure load from the finite element analysis 
while the corbel capacity is close to the finite element failure load.  Even the corbel 
capacity is slightly unconservatively predicted by the equation, with calculated strengths 
between 101% and 121% of the finite element failure load.  This is attributed to the 
interaction between corbel and corbel-flange. In reality, due to the sand jacks and other 
components between the corbels this interaction is expected to be less than observed in the 
finite element models, therefore the calculated capacity would become more conservative. 
In addition as the failure mechanism exhibits a high level of inelastic behavior, some 
overload, if it were to occur, will not result in catastrophic collapse.  Therefore the 
equations for calculating the failure load are considered appropriate. 

While not considered in finite element analysis or experiments, where the corbel-flange 
capacity is weaker than the capacity of the corbels, blocking located at the location of the 
corbels could be used to increase the effective corbel-flange capacity.  The strength of the 
blocking can be directly added to the strength of the flange, in the same manner as for the 
post-flange. 
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4.10 Comparison of Calculated Limit States with Experimental Results 

For the beams with timber posts, the capacity of the flange-post connection region was 
calculated using Equation 4.2 (β = 18) for the flange capacity, Equation 4.16 for the post 
capacity and Equation 4.9 for the interaction between the flange and post. When blocking 
was used this was added to the flange capacity assuming 100% effectiveness of the 
blocking. Expected strengths are again used to calculate the beam-post capacity.  The 
resulting calculated capacity of the flange-post region for the different configurations is 
compared in Figure 4-13 to the estimated failure load from the experimental data.  The 
estimated forces are approximately equal to or less than the observed forces, at between 
71% and 105% of that observed, for all members.  The variability is again largely 
attributed to the variability of material properties, particularly for the timber members, 
although the comparison shows that the calculated ultimate load is generally conservative 
even using expected strengths for the members.  The lime flaking pattern observed in the 
beams after considerable inelastic flange bending was very similar to the yield pattern 
assumed in developing Equation 4.2.  Therefore, this method is appropriate for predicting 
the capacity of the flange-post connection region with a timber post.  

Alternatively, the simplified procedure using the lesser of the flange capacity (with β = 11) 
and the post capacity was compared to the experimental capacity of the beams.  Figure 4-
14 shows that there was a larger variability between the calculated and experimental 
capacities using this method, however, the capacities were generally conservative.  The 
use of safety factors in design, such as allowable stresses or nominal strengths with load 
factors, would ensure that the capacity was not exceeded in the beam-post joint region. 
Therefore, based on the experimental data, as with the finite element analysis, the simplied 
method is acceptable but not as accurate as the interaction method. 

The effective post bearing area method was used to estimate the capacity of the flange-
post joint region with a steel post, based on Equation 4.11. The failure mode in the 
experiments with the steel post was consistent with the effective bearing area assumed for 
calculating the ultimate load, with yielding and crippling of the post around where it was 
bearing onto the beam in line with the web.  Unfortunately the calculated ultimate load 
could not be directly compared to the experimental data as timber corbels were also used 
in experiments with the steel posts and these affected the ultimate load of the system. 

The experimental failure load was also compared to the calculated ultimate load for the 
corbel-flange and timber corbels.  As the corbel-flange was shown to have a greater 
capacity than the timber corbels for each configuration, only the corbel strength was 
considered for comparison with the experimental data.  Figure 4-15 shows that the 
calculated ultimate load ranges between at between 76 and 104% of the experimental 
ultimate load.  Therefore, the calculated ultimate load predicts the failure of the corbels 
relatively accurately and generally conservatively. 
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FIGURE 4-13 Comparison of calculated flange-timber post capacity using interaction 
equation with finite element failure load for beams with blocking and eccentricities 
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FIGURE 4-14 Comparison of calculated flange-timber post capacity using minimum of 
flange capacity (β=11) and post capacity with finite element failure load for beams with 
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FIGURE 4-15 Comparison of calculated corbel capacity with experimental failure load 
for beams with and without eccentricities 
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SECTION 5
 
PREDICTION OF THE WEB YIELDING, CRIPPLING AND LATERAL 


BUCKLING CAPACITY
 

5.1 Overview 

Finite element analysis and experimental data showed that there are two critical failure 
modes for the web of cap and sill beams in falsework.  These are web yielding or crippling 
of the web, assuming that it is adequately stiffened or braced to prevent lateral 
deformation of the flanges, or lateral buckling of the web for inadequately braced beams. 
While in typical falsework beams, with relatively heavy webs, flange bending or post 
crushing is likely to govern the design of the beams, web yielding and buckling should be 
considered. Lateral web buckling becomes particularly critical for double stacked 
falsework beams. 

5.2 Web Yielding and Crippling 

The critical limit states for the web of beams in connection regions are web yielding and 
web crippling. The ultimate capacity of the web based on the web yielding limit state, Rw, 
loaded with a timber post can be given by: 

R = (αk d )F t ...5.1+ ww p yw

where: α is a factor to allow for the stress gradient through the flange, k is the distance 
from the outer face of the flange to the toe of the web (Fig. 5-1), dp is the depth of the post, 
Fyw is the yield stress in the web and tw is the thickness of the web.  Based on the Caltrans 
Falsework Manual (Caltrans 2001), α is equal to 2 for a 1:1 stress gradient. However, 
based on the AISC specifications, α is equal to 5 for an assumed 2.5:1 stress gradient 
through the flange and toe of the web. Appropriate stress gradients are investigated 
further in Section 5.5. 

A similar equation can also be applied when using a steel post given by: 

R = 2(α(k t ) + t )F t ...5.2+w ep p yw w 

where: tep is the thickness of the base plate of the steel post and tp is the wall thickness of 
the round hollow steel section (Fig. 7b).  This allows for yielding of the web in two 
locations, directly under each side of the post. 

The web of these beams can also be checked for web crippling.  Using the AISC 
specifications (AISC 2005) for web crippling, when the patch load is applied in at a 
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FIGURE 5-1 Effective web yielding region for a) timber post and b) steel post 

distance from the end of the beam equal to at least one half of the depth of the beam, the 
ultimate load, Rw, is given by: 

⎛ ⎞ tw⎛ ⎞1 3  N---- -----Rw = 0.80tw
2 

⎝ ⎠ ⎝ ⎠+ d tf 

EFywtf----------------- ...5.3 
tw 

where: d is the depth of the beam, tf is the thickness of the flange and E is the elastic 
modulus of the steel beam. 

5.3 Web Buckling 

Buckling of an unbraced, unstiffened beam, where the flange is loaded with a timber or 
steel post is assumed to displace sideways through buckling of the web, is synonymous 
with column buckling. Unlike the other limit states where deformation is localized in the 
beam-post joint region, lateral web buckling occurs over a long length of the beam as the 
flexural stiffness of the flange prevents localized lateral buckling.  To calculate the 
capacity for this limit state, the web of a beam can be treated like a column assuming that 
the effective length of the beam is equal to the tributary length associated with each post, 
which will often be equal to the spacing of the posts in a falsework bent.  Based on the 
column buckling equations from the AISC specifications (AISC 2005), the nominal 
capacity of the web of a beam, Rw, can be given by: 
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R = t ...5.4w wleffFcr 

where: leff is the effective tributary length of beam for a particular post and Fcr is equal to 
0.877Fe, where the Euler buckling load Fe is given by: 

π2EFe = ---------------
2 ...5.5 

Kh⎛ ⎞
⎝ ⎠  r 

where: K is the effective length factor, h is the clear height of the web between the flanges 
less the fillet radius and r is the radius of gyration for the web.  This assumes that the web 
will result in essentially elastic compression buckling, such that Fe < 0.44Fyw, which will 
be the case for the web of almost all beam sections.  The effective length factor which will 
ideally range between 1.0 and 2.0 for a member that is free of deflect laterally at one end. 
From finite element analyses described previously for concentrically loaded beams, a K 
factor of 1.7 was found to be appropriate for different beams with a timber post, implying 
some but not full rotational restraint provided by the timber post.  With a steel post the 
rotational restraint is higher, therefore assuming the same K value is conservative.  The 
radius of gyration for the web alone is given by tw/ 12 .  If stiffeners are used to increase 
web buckling capacity then r will increase as calculated using conventional theory.  When 
stiffeners are used, with a stiffener thickness similar to the web thickness, lateral web 
buckling will not be a critical limit state in bridge falsework and need not be considered. 
Using the unstiffened radius of gyration and a K factor of 1.7, Fe can be simplified to: 

π2EFe = -------------
2
- ...5.6

6h⎛ ⎞
⎝ ⎠tw 

For typical beams used in bridge falsework with relatively thick webs, web buckling is 
unlikely to govern design. However, when beams are stacked on top of each other, as is 
sometimes the case for sill beams in bridge falsework, the value of h in Equation 5.5 will 
become 2h and, as this is subsequently squared, Fe will be reduced by a factor of four.  In 
this case even beams with relative thick webs will become susceptible to lateral web 
buckling. 

5.4 Strength of Blocking 

When used, experimental and analytical studies to follow show that the full capacity of the 
blocking may not be effective for increasing the web capacity. The capacity of the timber 
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blocking can be given by Equation 4.16 as used for calculating the additional capacity for 
flange bending. However, with web yielding and crippling the effectiveness factor, γ, will 
be reduced. Although experimental results suggested some increase in the lateral web 
buckling capacity for one size beam, the effectiveness of blocking is difficult to quantify 
with web buckling. Thus, it is recommended that either stiffeners or lateral bracing be 
used if necessary to increase the capacity of the web for lateral buckling. 

5.5 Comparison of Calculated Strengths with Finite Element Analysis 

5.5.1 Localized Capacity of Web for Braced Beams 

The calculated web yielding and crippling capacity for a range of 12 and 14 in. deep 
beams, including: W12x26, W12x40, W12x53, W14x22, W14x30, W14x43, W14x61, 
W14x90, W14x132, HP12x53, HP14x73, HP14x89 and HP14x117 are compared to the 
failure load from finite element models in Figure 5-2. The finite element model assumed 
a rigid patch load applied to the beam, with lateral restraints to prevent lateral buckling. 
As the sections considered typical in bridge falsework, the heavier W and HP sections, all 
had relatively thick webs, a larger range of sections with thinner webs were considered to 
investigate potential web crippling. In Figure 5-2, only concentrically loaded unblocked 
beams are considered. In calculating the web yielding capacity two factors to account for 
different stress gradients were used.  The first assumed a 1:1 stress gradient as in the 
Caltrans Falsework Manual (Caltrans 2001) thus had an α value of 2. The second 
assumed an α value of 5 for a 2.5:1 stress gradient as in the AISC specifications (AISC 
2005). The calculated web crippling capacity was also compared to the finite element 
failure load. Figure 5-2 shows that web yielding assuming an α value of 2 conservatively 
and consistently predicts the ultimate web capacity of the beams, with calculated 
capacities between 85% and 91% of that from the finite element analyses.  An α value of 
5 typically over-predicts the web yielding capacity by up to 15% compared to the finite 
element model. Although, deformation of the web is observed indicative of web 
crippling, as shown in Figure 9c, Figure 5-2 shows that web crippling generally occurs at 
forces greater than the web yielding capacity for these beams.  

Figure 5-3 compares the calculated web yielding capacity, assuming and α value of 2, for 
the different beams including those with eccentrically applied loads and with blocking for 
the larger beams typical of those in falsework.  This figure shows that the calculated 
capacity was between 86 and 91% of the ultimate capacity from the finite element 
analysis, thus was consistently and conservatively estimated for each beam when 
eccentricities and blocking are considered.  The blocking was assumed to be 50% 
effective, thus was modeled with a γ = 0.5. The cases with blocking resulted in a 
calculated ultimate load of between 90 and 102% of the ultimate load from the finite 
element analyses, therefore compared well.  An equivalent transformed section, where the 
timber blocking is converted to an equivalent steel area, could be used instead of using the 
γ factor for reducing the blocking effectiveness.  However, as the γ factor results in a 
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FIGURE 5-2 Calculated web yielding, and crippling capacity versus finite element failure 
load for concentrically load, unblocked beams 
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FIGURE 5-3 Calculated web yielding capacity (α=2) versus finite element failure load for 
different beams with blocking and eccentricities 
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FIGURE 5-4 Calculated web yielding capacity (α=5) versus finite element failure load for 
different beams with blocking and eccentricities 
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FIGURE 5-5 Calculated web crippling capacity versus finite element failure load for 
different beams with blocking and eccentricities 
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relatively accurate and consistent estimate of the ultimate capacity a transformed section 
is not considered necessary.  The beam capacity from the eccentrically loaded cases were 
almost identical to the concentric cases, confirming that with a rigid patch load an 
eccentricity has no effect.  A figure similar to Figure 5-3 compares the calculated web 
yielding capacity of the beams assuming an α = 5 with the ultimate load from finite 
element analysis in Figure 5-4. The calculated capacity is again consistent compared to 
that from the finite element analysis, but unconservative by up to 19%, with this assumed 
α value. Therefore, an α = 2 is considered more appropriate.  If the ultimate load was 
defined differently, closer to the maximum load in the beam, then the α value of 5 will 
become less unconservative and the load would be tolerable.  However, a larger amount of 
permanent deformation would be observed which is undesirable for reusing falsework 
beams. 

The calculated web crippling capacity is compared to the ultimate load from finite element 
analysis of the beams in Figure 5-5. This figure shows that the calculated web crippling 
capacity is greater than the ultimate load governed by the web yielding limit state for all 
but the smallest W12x26 and W14x22 beams.  Even for these beams, use of the web 
yielding formula for calculating the ultimate web capacity is conservative.  In design the 
safety factor applied to the web crippling limit state is generally greater than for web 
yielding, thus it may govern for the lighter beams, although not for the heavier beams 
typically used in bridge falsework. 

5.5.2 Lateral Web Buckling Capacity 

The lateral web buckling capacity for the longer, 120in. long, beams with timber posts is 
compared to the calculated capacity in Figure 5-6.  Lateral buckling was observed in the 
W12x26, W12x40, W14x22, W14x30 and W14x43 beams.  When two beams were 
stacked on top of each other, for the larger beams like those typically used in bridge 
falsework, lateral buckling was observed in the HP12x53, HP14x73 and W14x90 beams. 
Figure 5-6 shows that assuming a K value equal to 1.7, the calculated capacity is 
conservative compared to the that from the finite element analyses by between 0 an 50%. 
The large variation is attributed to the sensitivity of the effective length factor, with a K 
value of 1.2 being appropriate for the beams with the largest discrepancy in the ultimate 
capacities. In general the K value of 1.7 is appropriate due to its conservatism.  

The effect of post eccentricity was considered in Section 3 for the two beam sections most 
susceptible to buckling. It was found for both sections that for an eccentricity of 6 times 
the web thickness (1.4 in), the ultimate load dropped by around 18% of the ultimate load 
for the concentrically loaded beams. As the drop in load is approximately linear, this 
corresponds to a 3% reduction in load for each multiple of web thickness of eccentricity. 
The analyses show that eccentricity does have an effect on the buckling capacity of the 
web and large eccentricities should be avoided.  Although, if accidental eccentricities are 
minimized and appropriate design safety factors are used, such eccentricities should not 
significantly affect the stability of a beam.  For a reduction in strength of no more than 
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FIGURE 5-6 Calculated lateral web buckling capacity versus finite element failure load 
for 10 ft. long beams without blocking or eccentricities 
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FIGURE 5-7 Comparison of calculated ultimate load using web yielding and lateral web 
buckling equations with the experimental failure load 
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10% of the concentric strength, the eccentricity should be limited to 3 times the web 
thickness. 

5.6 Comparison of Calculated Strengths with Finite Element Analysis 

The calculated web yielding capacity with an α value of 2 is compared to the experiment 
failure load for the different beams resulting in web yielding or crippling in Figure 5-7. 
For the beams resulting in lateral buckling, the calculated ultimate load assuming an 
effective length factor of 1.7 is also compared.  Figure 5-7 shows that the calculated 
ultimate load in all cases is conservative compared to the observed failure load with the 
calculated load ranging between 65% and 98% of the observed load.  For the HP12x53 
and HP14x73 sections exhibiting web yielding the calculated load was within 7% of the 
observed load. For the W14x90 section the calculated ultimate load up to 30% less than 
the observed load. The larger difference is attributed to the thicker flange which provides 
some resistance to web yielding through flexure of the flange and is not considered in web 
yielding equation. However the calculated capacity is conservative. Using an α value of 5 
as given in the AISC specifications would result in unconservatively calculated ultimate 
loads in each beam except the W14x90 beams. In reality a value of around 4 may be result 
in calculated loads on average closest to the observed failure loads, although the assumed 
value of 2 is conservative. 

The calculated ultimate loads using the web buckling equation are conservative for the 
concentrically loaded (both W14x90) beams but accurate for the eccentrically loaded 
(HP14x73) beam that exhibited lateral buckling.  The difference is again attributed to the 
response being very sensitive to the assumed effective length.  Effective length factors of 
1.48 and 1.37 respectively would result in calculated capacities identical to the observed 
ultimate load for the two concentrically loaded beams respectively.  As the level of 
rotational fixity at the top of the beam is difficult to determine, assuming the more 
conservative value of 1.7 is appropriate. 
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SECTION 6
 
PROPOSED DESIGN OF FALSEWORK BEAMS AND POSTS FOR GRAVITY 


LOADS 

6.1 Overview 

In this section the design equations currently used for the critical limit states in falsework 
bents based on the Caltrans Falsework Manual (Caltrans 2001) and other predominant 
specifications, including the 2001 NDS specifications (AFPA 2001) for timber members, 
and the AISC Specifications (AISC 2005) for steel members, are examined.  Equations 
from the different specifications are contrasted and compared with proposed equations 
from recent investigations. The various components of the falsework bents considered in 
this section are the cap beams, timber or steel posts, sill beams and corbels.  It is assumed 
that the blocks, wedges and sand jacks between the sill beams and corbels are adequate to 
transfer load between the sill beams and corbels, with research on sand jacks currently 
being conducted at the University of California at San Diago.  The stringer beams and 
elements above these are not considered.  Foundation pads are also not considered.  The 
equations in this section are presented in Allowable Stress Design (ASD) format, currently 
used in Caltrans falsework design, with equations in Load and Resistance Factor Design 
(LRFD) format presented in Appendix 1. 

6.2 Design of Critical Members and Connections for Gravity Loads 

6.2.1 Cap Beam Members for Flexure and Shear 

The cap beams should be designed for the bending moments and shear forces due to the 
series of point loads from the reactions of the stringer beams.  These limit states use 
conventional theory that is well established and is included in the Caltrans Falsework 
Manual. 

6.2.2 Lateral Web Buckling in a Cap Beam 

In addition to beam bending and shear, an unstiffened, unbraced cap beam should be 
checked for lateral web buckling based on Equations 5.4 and 5.5. There are currently no 
specifications for web buckling in the Caltrans Falsework Manual. The following 
equations are based on a modification of the column buckling formula in the AISC 
specifications. In ASD format the applied stress should be less than the critical buckling 
stress (fcw < Fcr), where the applied stress, fcw, is given by: 

Rfcw = ------------ ...6.1 twleff 
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where: R is the reaction from a post, tw is the thickness of the web and leff is the effective 
tributary length of the beam associated with a post.  The critical buckling stress, Fcr, is 
given by: 

Fcr = 0.525Fe ...6.2 

where: the Euler load, Fe, is given by: 

π2EFe = -------------- ...6.326h⎛ ⎞
⎝ ⎠tw 

where: E is the elastic modulus, h is the clear height between the flanges less the fillet 
radius and r is the radius of gyration.  This equation is based on elastic buckling of the web 
which will occur when Fe < 0.44Fyw. Most beam webs will fit into this category and 
where they do not, lateral web buckling need not be checked. 

If the design of the beam is controlled by web buckling it is recommended that either 
stiffeners welded to the flanges and the web at the post location or bracing of the corbel-
flange of the beam be used. 

6.2.3 Web Yielding in a Cap Beam 

The reaction of the cap beam from the post should be designed for web yielding such that 
the applied stress in the web is less than the allowable stress (fcw < Fcwb). The applied 
stress, fcw, in the beam for web yielding is given by: 

Rfcw = ---------------------------- ...6.4
(2k + dp)tw 

where: k is the distance from the outer face of the flange to the toe of the web, dp is the 
depth of the post in the longitudinal beam direction and tw is the thickness of the web. 

The allowable stress in a beam allowing for blocking, Fcb, is given by: 

0.5Fcb'Ab= F 1 -------------------------------------- ...6.5Fcwb cw⎝
⎛ + ⎠

⎞ 
Fcw(2k + dp)tw 

where: Fcwb is the allowable compressive stress in the web, Fcb' is the allowable stress in 
the timber blocking and Ab is the cross sectional area of the timber blocking. With no 
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blocking the term inside the brackets is equal to 1.0. The allowable stress in the web is 27 
ksi for A36 steel based on the Caltrans Standard Specifications (Caltrans 1992) for web 
crippling, which are referred to by the Falsework Manual. Based on the AISC 
specifications, the allowable stress would be 24 ksi for A36 steel or 33 ksi for A572 Gr50 
or A992 steel. 

Equation 6.4 is given in the Falsework Manual, although it is referred to as web crippling. 
The web crippling equation in the AISC specifications is quite different. Web yielding 
refers to localized material yielding in the region of the applied load, whereas web 
crippling, based on the AISC specifications, refers to localized buckling of the web in the 
region of the applied load. For thinner webs web crippling may occur before web 
yielding, although the preceding analysis showed that web yielding will govern for all 
typical falsework beams. Thus, crippling need not be considered in the Falsework 
Manual.  To align the Falsework Manual with current AISC specifications, Equation 3.4 
should be considered web yielding. 

6.2.4 Post-flange Bending in a Cap Beam with a Timber Post 

6.2.4.1 Method 1 - Simplified Method 

The flange-post capacity is based on flange bending assuming a uniform stress 
distribution from a timber post. This limit state is not currently included in the Falsework 
Manual. The allowable stress in the region between the flange of the cap beam and the 
post, Fcf, is given by: 

11tf
2Fb + Fcb'Ab= --------------------------------------- ...6.6Fcf Ap 

where: tf is the thickness of the flange, Fb is the allowable bending stress in the flange of 
the beam, Fcb' is the allowable stress in the timber blocking, Ab is the cross sectional area 
of the timber blocking and Ap is the area of the post. 

6.2.4.2 Method 2 - Interaction Method 

For a more accurate estimate of the flange-post capacity The connection between a sill 
beam and a timber post can be designed for the combination of flange bending and post 
crushing. The proposed equation for calculating the capacity of this connection is based 
on Equation 4.9, but rearranged based on and allowable stress in the post such that: 

1 –---
2⎛ ⎞1 1f < ⎜------- + -----------⎟ ...6.7cp 2 2⎝ F ' ⎠Fcf cp 
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where: fcp is the applied stress in the post from the reaction of the cap beam, Fcp' is the 
allowable stress in a short length of post (without modification by the stability factor) and 
Fcf is the allowable stress in the post-flange of the cap beam converted to an equivalent 
allowable post stress, given by: 

18tf
2Fb + Fcb'Ab= --------------------------------------- ...6.8Fcf Ap 

where: tf is the thickness of the flange, Fb is the allowable bending stress in the flange of 
the beam and Ap is the area of the post. 

The allowable stress in the beam flange is 22 ksi based on Caltrans Standard 
Specifications and AISC Specifications for A36 steel. For A572 Gr50 or A992 steel 
beams the allowable stress is 30 ksi. The allowable stress in a timber post or block loaded 
parallel to the grain based on Caltrans Standard Specifications is 1600 psi for a short 
length post or block. For Number 2 Douglas Fir timbers the allowable stress is 700 psi, 
therefore substantially less than the allowable stress in the Standard Specifications.  This 
discrepancy is discussed in the following section.  The above equation for flange bending 
is calibrated based on a 12 x 12 in. post.  If two posts are used, this equation would 
conservatively predict the flange bending capacity.  If smaller posts are used it would 
again be conservative as the width of the post relative to the width of the flange would be 
reduced. 

6.2.5 Localized Yielding of a Steel Post from Bearing of the Cap Beam 

The localized stresses in a post where a cap beam bears onto a post are designed to be less 
than the allowable stress (fcp < Fcp). With the effective force in any blocking subtracted, 
the applied localized stress in the post, fcp, is given by: 

Rf = ---------------------------------------------------- ...6.9cp (5 t( f + tep) + 2k1)2tp 

where: tep is the thickness of the end plate of the post, k1 is the distance from the centroid 
of the beam web to the edge of the fillet and tp is the thickness of the post wall. 

The allowable stress in the steel post, allowing for blocking, Fcpb, is given by: 

0.3Fcb'Ab= F 1 + ------------------------------------------------------------- ...6.10Fcpb cp 
⎛
⎝ Fcp(5 t( f + tbp) + 2k1)2tp 

⎞
⎠ 
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where Fcp is the allowable compression stress in the steel post.  For an A500 GrB (42 ksi) 
round hollow steel section the allowable steel stress would be 28 ksi based on the AISC 
steel specifications. Conservatively, the same allowable stress to that used for web 
yielding could be used for an A36 steel beam could be used for the post. 

6.2.6 Timber Post Design 

The current equation for the design of a timber post for compressive forces in the 
Falsework Manual requires the applied stress to be less than the allowable stress in the 
post (fcp < Fcp'), where Fcp' (in psi) is given by: 

480000F ' = ------------------ ≤ 1600 ...6.11 cp 2L⎛ ⎞
⎝ ⎠dp 

where: L is the length of the post, dp is the depth (or width, whichever is less) of the post. 
The NDS Specifications design for an applied stress less than the modified allowable 
stress (fcp < Fcp') where the modified allowable stress is given by: 

F ' = C F ∗ ...6.12cp p c 

where: Fc* is the allowable compression stress multiplied by all applicable adjustment 
factors except the column stability factor and Cp is the column stability factor given by: 

FcE FcE 
2 

1 + -------- 1 + -------- FcE∗Fc ∗ – –FcC = ------------------ cF ∗ ...6.13cp 2c 2c 

where: c = 0.8 for sawn timber, FcE is given by: 

KcEE' 
= -------------- ...6.14FcE l 2 e⎛ ⎞
⎝ ⎠dp 

where: KcE is a constant equal to 0.3 for visually graded timber, E' is the allowable elastic 
modulus, le is the effective length of the column which can be assumed to equal L for 
falsework applications. This calculation of Cp is quite cumbersome, therefore for a 12 x 12 
in. Number 2 Douglas Fir post with and allowable elastic modulus of 1300 ksi and other 
values as given above based on typical moisture content, temperature and other 
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conditions, Cp is plotted against column length in Figure 6-1.  The slenderness of the post 
le/dp should not exceed 50. 

The maximum allowable stress parallel to the grain, Fc*, is 700 psi for a Number 2 
Douglas Fir member based on the NDS specifications.  Thus the allowable stress in 
different length posts are given in Figure 6-2. This results in much lower allowable 
stresses than the Caltrans Falsework Manual, which has a maximum allowable stress of 
1600 psi, with no reduction for posts up to 16.5 ft. long. Based on the component 
experiments using three short (4 ft. long) posts, the minimum failure load from the three 
posts was 221 kip, corresponding to a failure stress based on actual post dimensions is 
1670 psi. This is very close almost equal to the allowable stress in the timber post based 
on the Caltrans specifications, thus with no safety factor, the Caltrans specifications are 
unconservative. However, given that the allowable stress found typical for the posts, used 
in the finite element model based on the other component experiments is 2660 psi, an 
allowable stress of 700 psi is excessively conservative.  Thus, based on this limited data, 
an allowable stress of 1000 psi is considered appropriate. Using nominal post dimensions 
instead of the actual dimensions, a 1000 psi allowable stress has a safety factor of at least 
1.5, with an average safety factor of 2.4. Figure 6-2 shows that assuming a maximum 
allowable stress of 1000 psi and using the Cp factor based on the NDS specifications 
results in reduced allowable stresses for shorter columns, but similar stresses for longer 
columns compared to the Caltrans specifications.  Further research on the material 
properties would be beneficial. 

6.2.7 Steel Post Design 

The current equation for the design of a steel post in the Falsework Manual requires the 
applied stress to be less than the allowable stress in the post (fcp < Fcp), where Fcp (in psi) 
is given by: 

2⎛ ⎞F = 16000 – 0.38 --L- ...6.15cp ⎝ ⎠r 

where: r is radius of gyration of the post. Based on the AISC specifications the allowable 
stress is given by:

F = 0.525F  for (Fe < 0.44Fyp) ...6.16cp e 

or 

Fy 

F = 0.658
Fe (0.6F ) for (Fe > 0.44Fyp) ...6.17cp yp 
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where Fyp is the minimum yield stress of the post and Fe is given by: 

π2EFe = ---------------- ...6.18 
⎛KL⎞ 2 

⎝ r ⎠ 

where: K is the effective length factor assumed to equal 1.0 and E is the elastic modulus of 
the steel. For a A500 GrB (42 ksi) post the maximum allowable stress from the AISC 
specifications would be 25 ksi.  The maximum stress based on the Caltrans equation is 
equal to 16 ksi, therefore is much more conservative than the AISC specifications.  This 
conservatism continues for longer posts, as shown by Figure 6-3 for an 18 in. dia., 3/8 in. 
thick, round steel hollow post, up to a length of 60 ft.  For posts longer than 60 ft the 
capacity is similar.  While there is no experimental data to suggest a preference of either 
method, the AISC equation has been developed more recently based on a larger base of 
experimental data. 
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6.2.8 Localized Yielding of a Steel Post due to Bearing onto a Sill Beam 

As at the top of a post where the cap beam bears onto the post,  the base of a steel post 
should be designed for localized yielding where it bears on to a sill beam.  The same 
formulation as that for the top of the post can be used (Eqs. 6.9 and 6.10). 

6.2.9 Flange Bending-Post Crushing in a Sill Beam with a Timber Post 

The design of the flange-post bearing region for a timber post bearing onto a sill beam 
should be considered in the same way as that for a cap beam bearing onto a post using 
either of the two methods described in Section 6.2.4 (Eqs. 6.6 to 6.8). 

6.2.10 Web Yielding in a Sill Beam 

The web of the sill beam should be checked for localized stresses using the same 
equations as that for the cap beam (Eqs. 6.4 and 6.5). 

6.2.11  	Lateral Web Buckling in a Sill Beam 

Lateral buckling of the web of a sill beam should be checked using Equations 6.1 through 
6.3 as for the cap beam. Where double stacked sill beams are used, the height of the web 
in Equation 6.3 is considered to be the combination of heights of the two beams.  For 
double stacked beams this limit state may become critical, in which case fully welded 
stiffeners should be used beneath the post or the post-flange should be laterally braced. 

6.2.12 Corbel-flange Bending in a Sill Beam 

The corbel-flange of the sill beam, where it bears onto the wedges, sand jacks, blocks and 
corbels, should be checked for adequate beam flange capacity.  This check is made by 
ensuring that the applied stress between the beam and supports above the corbels is less 
than the allowable bearing stress due to flange bending (fbg < Fgf). The applied bearing 
stress, fbg, is given by: 

Rfbg =	 --------- ...6.19Abg 

where: R is the applied load from a post and Abg is the bearing area between the beam and 
its supports above the corbels. The allowable bearing stress based on corbel-flange 
capacity and capacity of any blocks between the flanges, Fgf, is given by: 

14tfFb + Fcb'AbFgf = -------------------------------------- ...6.20Abg 
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where: tf is the thickness of the corbel-flange, Fb is the allowable bending stress in the 
flange, Fcb' is the allowable compression stress in the blocking (1000 psi as for post), Ab is 
the cross-sectional area of the blocking and Abg is the overlap (bearing) area between the 
flange and corbels. This equation assumes that at least two corbels are used beneath each 
post with a spacing between the corbels of at least 24 in.  If only a single corbel is used 
then the equation need not be checked as corbel crushing will govern the response for all 
practical beam sizes. If blocking is required to increase the flange-corbel interaction 
strength, it can be placed directly under the post, unless there are corbels located more 
than 24 in. from the center of the post, in which case blocking should be also be placed 
directly above these corbels. 

6.2.13 Corbel Capacity 

The applied stress between the supports of the sill beams and the corbels should be 
compared to the allowable stress perpendicular to the grain in the corbels (fbg < F ). Thec⊥ 

applied stress is given by: 

Rfbg =	 --------- ...6.21Abg 

where: R is the applied post load and Abg is the bearing area onto the corbels.  The 
allowable stress in a Number 2 Douglas Fir member loaded perpendicular to the grain 
based on NDS specifications is 625 psi.  The allowable stress in the Caltrans Standard 
Specifications is 450 psi. The calculated failure stress of the corbels from the component 
experiment, which was also found to be reasonable for the other experiments, was 540 ksi. 
Therefore, the allowable stress from the NDS specifications is very unconservative, as the 
allowable stress is greater than the observed failure stress. Even the allowable stress from 
the Caltrans specifications only has a factor of safety of 1.2. As the failure mechanism for 
a corbel is very stable, large deformations possible and an increasing load observed after 
failure, a relatively low factor of safety is acceptable.  However, it is evident that no 
increase in the allowable stress of 450 psi should be made to compare with the NDS 
specifications. 

6.3 Comparison of Different Limit States in Beams and Posts 

6.3.1 Comparison using Actual Strengths 

The critical limit states in cap and sill beams, posts and corbels are compared using the 
actual strengths based on the experimental data in Table 6-1. It is assumed that the beam 
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TABLE 6-1 Comparison of calculated ultimate beam, post and corbel loads based on 
actual strengths from experiments (kip) 

Section HP12x53 HP14x73 HP14x89 W14x90 W14x90 HP14x117 W14x120 
Post Type Timber Timber Timber Timber Steel Steel Steel 

Flange - Post Interation1,2 168 208 258 288 308 299 356 

Bottom Flange Bending3 149 200 296 388 388 505 680 

Corbel Crushing4 149 182 182 180 270 277 274 

Web Yielding5 333 389 481 345 473 924 716 

Lateral Web Buckling6 711 814 1460 521 521 7 1260 
Lateral Web Buckling for 
a Double Stacked Beam6 178 204 364 130 130 817 315 

Post Strength - 4 ft long 352 352 352 352 888 888 888 

Notes: 1. Top flange bending capacity is based on beta = 18.

 2. Interaction equation used for timber post, effective post bearing area with alpha = 5 used
                 for steel post.

 3. Beta = 14 for bottom flange bending.
 4. Two corbels spaced 24 in. apart o.c. assumed with timber post, three corbels with outer corbe

                 spaced 24 in. apart o.c. assumed with steel post
 5. Alpha = 2 for timber post and 5 for steel post
 6. Assumed effective length of 10 ft
 7. Pcr > 0.44 Fy and will not govern 

represents a sill beam with a post bearing on the post-flange and corbels below the beam, 
although the flange-post behavior is equally applicable for a cap beam.  The different limit 
states considered are: an interaction between flange bending  (using the more accurate 
interaction method) and post compression strength with a timber post;  Localized post 
yielding for the steel post; corbel-flange bending; corbel crushing; web yielding; web 
crippling, and; lateral web buckling assuming 10 ft. long beams.  Table 6-1 shows that 
corbel crushing typically governs the response of all cases with single stacked beams. 
This is followed by post-flange bending and post crushing or localized yielding. The 
flange-post capacity is smaller than the web capacity for all but the double stacked beams 
where lateral buckling can govern the capacity.  It shows that for beams with thick webs, 
like those typically used in bridge falsework, web limit states are unlikely to control the 
capacity of the beam-post regions.  However, for double stacked beams lateral bracing of 
the beams should be used to prevent lateral web buckling if it is calculated to govern the 
capacity. 
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TABLE 6-2 Comparison of calculated allowable beam, post and corbel loads based on 
original Caltrans allowable stresses (kip) 

Section HP12x53 HP14x73 HP14x89 W14x90 W14x90 HP14x117 W14x120 
Post Type Timber Timber Timber Timber Steel Steel Steel 

Flange - Post Interation1 N/A 

Bottom Flange Bending1 N/A 

Corbel Crushing 130 158 159 156 235 241 238 
Web Yielding 163 189 232 177 232 454 351 

Lateral Web Buckling2 N/A 
Lateral Web Buckling for 
a Double Stacked Beam2 N/A 

Post Strength - 4 ft long 230 230 230 230 307 307 307 

Post Strength - 15 ft long 230 230 230 230 304 304 304 

Post Strength - 30 ft long 77 77 77 77 286 286 286 

Notes: 1. No current procedure for flange bending
 2. No current procedure for web buckling 

6.3.2 Comparison using Allowable Stresses based Current Caltrans Provisions 

Table 6-2 shows the calculated load in each of the components based on allowable stresses 
currently used in Caltrans falsework design. The beams are assumed to be A36, with an 
allowable stress of 27 ksi for web yielding (termed crippling in the Falsework Manual). 
Post compression strength is added to the comparison, with the timber posts assumed to 
have an allowable maximum compression capacity of 1600 psi, modified for the 
appropriate length based on Equation 6.11. The timber corbels have an allowable stress of 
450 psi with the bearing area assumed to be equal to the width of the beam flange 
multiplied by the combined width of the corbels.  Nominal dimensions of 12 in. are used 
for the posts and corbels instead of the actual dimension of 11.5 used in generating Table 
6-1, as this is typical of design practice.  As there are no provisions for flange bending and 
web buckling, these are not included in Table 6-2. 

Post compression strength is shown to govern for the longer timber post, and corbel 
crushing governs when shorter timber posts and steel posts are used.  Although, the 
allowable post strength for the shorter post is less than that observed in typical  
experiments, it is greater than observed in the weakest post component experiment (221 
kip), therefore the allowable post strength is not always conservative.  Table 6-1 showed 
that web yielding is unlikely to govern, although when allowable stresses and A36 steel is 
considered, Table 6-2 shows that it becomes more likely. 
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TABLE 6-3 Comparison of calculated allowable beam-post loads based on recommended 
strengths from experiments (kip) 

Section HP12x53 HP14x73 HP14x89 W14x90 W14x90 HP14x117 W14x120 
Post Type Timber Timber Timber Timber Steel Steel Steel 

Flange Bending -Simplif.1 47 63 93 122 

Flange - Post Interaction2 68 84 105 117 

Localized Post Yielding3 157 152 181 

Bottom Flange Bending4 60 80 118 155 155 202 272 

Corbel Crushing5 130 158 159 156 235 241 238 

Web Yielding6 145 168 206 157 206 403 312 

Lateral Web Buckling7 427 488 875 313 313 8 756 
Lateral Web Buckling for 
a Double Stacked Beam7 107 122 219 78 78 490 189 

Post Strength - 4 ft long 143 143 143 143 480 480 480 
Post Strength - 15 ft long 129 129 129 129 463 463 463 
Post Strength - 30 ft long 74 74 74 74 398 398 398 
Notes: 1. Flange bending capacity is based on beta = 11
            2. Flange bending capacity when using interaction equation is based on beta = 18.

 3. Effective post bearing area defined with alpha = 5 for steel post.
 4. Beta = 14 for corbel flange bending.
 5. Two corbels spaced 24 in. apart o.c. assumed with timber post, three corbels with outer 

                corbels spaced 24 in. apart o.c. assumed with steel post
 6. Alpha = 2 for timber post and 5 for steel post
 7. Assumed effective length of 10 ft
 8. Pcr > 0.44 Fy and will not govern 

6.3.3 Comparison using Allowable Stresses based Recommended Provisions 

Based on the allowable stresses recommended in this report for the beams, posts and 
corbels, a comparison of the different critical limit states is made in Table 6-3.  The beams 
are assumed to be A36, with allowable stresses of 22 ksi for flange bending and 24 ksi for 
web yielding. Fcr was reduced to 60% of the nominal value based on the allowable stresses 
for web buckling. The timber posts are assumed to have an allowable compression 
capacity of 1000 psi and the timber corbels have an allowable stress of 450 psi with 
nominal (12 in.) post and corbel dimensions used. 

The resulting comparison is quite different from Table 6-1, as the strength of the beams 
are reduced from 55 ksi, the actual strength of an A572 Gr50 or A992 beam, compared to 
the 22 to 24 ksi allowable stresses. In addition, the safety factors for allowable stresses on 
the corbels are smaller than those for the beams and posts, thus the relative strength of the 
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corbels increased. This is justified as corbel crushing will not cause immediate collapse, 
while post crushing or web buckling is more likely to cause collapse.  Table 6-3 shows that 
post compression strength is still likely to govern for longer posts and even for a shorter 
post the allowable load is reduced significantly compared to the current Caltrans 
procedure (Table 6-2). If the posts are short enough, flange bending-post crushing is 
shown to govern the response with the timber posts and smaller beams.  Lateral web 
buckling of double stacked beams may also be critical.  Therefore, compared to Table 6-2, 
potentially critical limit states, such as flange-post interaction and lateral buckling, are not 
considered by the current Caltrans Falsework Manual.  Where flange bending becomes 
critical, blocking can be used to increase the capacity of both the post-flange and corbel-
flange. 
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SECTION 7
 
DESIGN EXAMPLES
 

7.1 Overview 

Two design examples are considered where the cap beam, post, sill beam and corbels are 
designed. The bridge in the first example has a relatively low height and the loads are 
relatively low thus timber posts are chosen. In the second example, the bridge is assumed 
to be higher with falsework bents and posts spaced further apart, thus steel posts are 
chosen. The critical steps are described for the gravity load design.  Lateral loads are not 
considered. 

7.2 Design of Falsework with Timber Posts 

7.2.1 Loads 

The critical limit states in a falsework bent with a timber post are illustrated in Figure 7-1. 
Based on falsework plans for the Arch Road Stage 4 Bridge (J. Lammers, Caltrans, 
Personal communication), with a general falsework layout and typical cross sections 
shown in Appendix 2, it is assumed that the applied load from the superstructure of the 
bridge, and including the joists and stringer beams is: 

pD+L = 450 psf 

For falsework bents spaced 20 ft apart, the line load on the cap beam of the falsework bent 
is: 

w = 9000 lb/ft = 9.00 kip/ft 

7.2.2 Cap Beam Bending 

Try an A36, HP12x53 section for the cap beam, with a weight of 53 lb/ft, giving a total 
weight on the cap beam of: 

w = 9.05 kip/ft 

If the posts are spaced 10 ft apart in the bent then the maximum bending moment in the 
bent can be conservatively calculated by:

wL2 9.05 102)(M = ---------- = ------------------------ = 113 kip-ft = 1360 kip-in8 8 

and the applied stress is: 
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 FIGURE 7-1 Portion of a falsework bent with timber post identifying critical limits states 
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M 1370fb = ----- = ------------ = 18.3 ksiZ 74 

compared to the allowable stress of: 

Fb = 22 ksi 

which is greater than fb, therefore the beam is adequate for bending. 

7.2.3 Cap Beam Shear 

The applied shear is:

wL 9.05 10( )V = -------- = --------------------- = 45.3 kip2 2 

giving an applied shear stress:

V 45.3fv = ------- = --------------------- = 8.57 ksiAw (12 0.44) 

compared to the allowable stress: 

Fv = 14.5 ksi 

which is greater than fv, therefore the beam is adequate for shear. 

7.2.4 Lateral Web Buckling in the Cap Beam 

The reaction in the beam is:

R = wL = 9.05 10 = kip( )  90.5 

thus, the average applied stress in the web for an effective length in the web of 10 ft is:

V 90.5fcw = ------------ = -------------------------------- = 1.71 ksi t 0.44 10 12( )( )wleff 

The Euler buckling load for the web is given by: 
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π2E π2(29000)F = -------------- = ----------------------------- = 14.8 ksi

6h 2 6 10.21) 2
⎛ ⎞ ⎛ (

e 
------ ---------------------⎞⎝ ⎠  ⎝tw 0.44 ⎠ 

Check: Fe < 0.44 Fy < 0.44(36) < 15.8 ksi - Yes, therefore check of critical load should be 
made. Note that if Fe > 0.44 Fy then web is non slender as a equivalent column and check 
would not be necessary. 

The critical load is given by: 

Fcr = 0.525 Fe = 0.525(14.8) = 7.77 ksi 

which is greater than fcw, therefore the beam is easily adequate for web buckling (this limit 
state is only likely to become critical for double stacked beams). 

7.2.5 Web Yielding in the Cap Beam 

The applied localized stress in the web from the 12 x 12 in timber post is:

R 90.5fcw = ---------------------------- = --------------------------------------------------- = 14.4 ksi
(2k + dp)tw (2 1.13) + 12)(( 0.44) 

which, assuming no blocking, is compared to: 

Fcw = 24(1 + 0) = 24 ksi 

which is greater than fcw, therefore the beam is adequate for web yielding. 

7.2.6 Localized Flange Bending in the Flange-Post Joint Region in the Cap Beam 

The applied stress at the top of the post is given by:

R 90.5f = ------ = ---------- = 0.628  ksi cp Ap 122 

Assuming that the beam is unblocked, using the simplified method, the allowable stress in 
the post due to prevent bending in the flange is given by:

11t2Fb + Fcb'Ab 11 0.442)( ) + 0( 22= --------------------------------------- = -------------------------------------------- = 0.325 ksiFcf Ap 122 
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which is less than fcp, therefore blocking should be used to increase flange bending 
capacity. With blocking the effective flange strength is:

11t2Fb + Fcb'Ab 11 0.442) 22 + ( ) 6 ( )( ( )  1.00 8 ( ) 2= --------------------------------------- = ----------------------------------------------------------------------------- = 0.992 ksiFcf Ap 122 

which is greater than fcp, therefore the beam is adequate for flange bending. Note that the 
design could attempt to use the slightly more elaborate interaction method (See Section 
6.2.4), particularly if the unblocked allowable stress is close to the applied stress, which 
may eliminate the need for blocking. Although, in this case, blocking would still be 
required. 

7.2.7 Post Compression Strength 

The maximum applied load in the post, including the weight of the post, is:
 

P = R + Wpost = 90.5 + 12(15)(0.05) = 91.3 kip
 

giving an applied stress in the post of:


P 91.3f = ------ = ---------- = 0.634  ksi cp Ap 122 

Cp is estimated at 0.90 from Figure 6-1 for the 15 ft long post, giving an allowable post 
stress of: 

Fcp = CpFc* = 0.9(1.00) = 0.900 ksi 

which is approximately equal to fcp, therefore the post is adequate. 

7.2.8 Flange-post Interaction, Web Yielding and Web Buckling in the Sill Beam 

An HP12x53 can be assumed for the sill beam also.  Therefore the capacity for flange-post 
interaction, web yielding and web buckling are the same as for the cap beam.  As the 
applied loads are also almost identical, there is no need to check the design of the blocked 
sill beam for these limit states. 

7.2.9 Corbel-flange Bending in Sill Beam 

The reaction from the corbels is given by:

R = P + = 91.3 + 10 0.053) = 91.8 kip(Wbeam 
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giving an applied stress:

R 91.8 = --------- = ----------------------------- = 0.318 ksifbg Abg 2 12 (( ) 12.0) 

With blocking used to increase the post-flange from bearing from the post, the corbel-
flange is also considered to be blocked, thus the effective allowable bearing stress for the 
corbel-flange is given by:

14t2Fb + Fcb'Ab 14 0.442) 22 + ( ) 8 ( )( ( )  1.00 6 ( ) 2= --------------------------------------- = ----------------------------------------------------------------------------- = 0.540 ksiFgf Ap 2 12 (( ) 12.0) 

which is greater than fbg, therefore the corbel-flange is adequate 

7.2.10 Corbels 

The applied bearing stress in the corbels is equal to that given above for the bearing of the 
corbel-flange. The allowable stress in the corbels is:

F ' = 0.45 ksic⊥ 

which is greater than fbg, therefore the corbels are adequate. 

7.3 Design of Falsework with Steel Posts 

7.3.1 Loads 

The critical limit states in a falsework bent with a timber post are illustrated in Figure 7-2. 
It is assumed that the applied load from the superstructure of the bridge and including the 
joists and stringer beams is 450 psf as in the previous example.  However in this example 
the falsework bents are assumed to have tributary loads from a 35 ft length of the bridge. 
Thus, the line load on a the cap beam of the falsework bent is: 

w = 15750 lb/ft = 15.8 kip/ft 

7.3.2 Cap Beam Bending 

Try an A992, W14x120 section for the cap beam, with a weight of 120 lb/ft, giving a total 
weight on the cap beam of: 

w = 15.9 kip/ft 
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 FIGURE 7-2 Portion of a falsework bent with steel post identifying critical limits states 
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If the posts are spaced 15 ft apart in the bent then the maximum bending moment in the 
bent can be conservatively calculated by:

wL2 15.9 152( )  M = ---------- = ------------------------ = 447 kip-ft = 5370 kip-in8 8 

and the applied stress is:

M 5370fb = ----- = ------------ = 25.3 ksiZ 212 

compared to the allowable stress of: 

Fb = 30 ksi 

which is greater than fb, therefore the beam is adequate for bending. 

7.3.3 Cap Beam Shear 

The applied shear is:

wL 15.9 15( )V = -------- = --------------------- = 119 kip2 2 

giving an applied shear stress:

V 119fv = ------- = ----------------------------- = 13.9 ksiA 14.5 0.590)(w 

compared to the allowable stress: 

Fv = 20 ksi 

which is greater than fv, therefore the beam is adequate for shear. 

7.3.4 Lateral Web Buckling in the Cap Beam 

The reaction in the beam is:

R = wL = 15.9 15 = kip( )  239 

thus, the average applied stress in the web for an effect length in the web of 15 ft is: 
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------ ---------------------

V 239f = ------------ = -------------------------------- = 2.25 ksic t ( ) 120.59 15 ( )wleff 

The euler buckling load for the web is given by:

π2E π2(29000)Fe = -------------- = ----------------------------- = 19.5 ksi 
⎛ ⎞6h 2 ⎛6 11.91( )⎞ 2 

⎝ ⎠tw ⎝ (0.59) ⎠ 

Check: Fe < 0.44 Fy < 0.44(50) < 22.0 ksi - Yes, therefore should check critical load. 

The critical load is given by: 

Fcr = 0.525 Fe = 0.525(19.5) = 10.2 ksi 

which is greater than fc, therefore the beam is adequate for web buckling. 

7.3.5 Web Yielding in the Cap Beam 

This need not be checked as the post has a thinner wall and lower yield stress than the 
beam web, therefore localized yielding in the post will occur before localized yielding in 
the web. 

7.3.6 Localized Post Yielding in the Cap Beam 

Assume an 18 in diameter, 3/8 in thick, A500 GrB (42 ksi yield stress) post section.  The 
applied stress in the critical region of the post, when the beam is unblocked, is given by:

R 239f = ---------------------------------------------------- = --------------------------------------------------------------------------------- = 31.2 ksicp 5 t( f + t ) + 2k1)2tp ( ( + 0.5) + 2 1.5 ) (( ep 5 0.94 ( )  2 0.375) 

and the allowable stress in the post is:

0.3Fcb'Ab= F ⎛1 ----------------------------------------------------------⎞ = 28 1( + 0) = 28 ksiFcpb cp⎝ + Fc(5 t( f + tbp) + 2k1)2tp ⎠ 

The allowable stress is less than the applied stress, therefore will try using blocking to take 
a part of the post load. The resulting applied stress in the web is given by: 

0.3Fcb'AbFcpb = Fcp⎝
⎛1 + ----------------------------------------------------------⎞ Fc(5 t( f + tbp) + 2k1)2tp ⎠ 
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-------- -----------------------------

----- ---------

⎛ 0.3 1.0( ) 6 8 2( )( )( )= 28 1 ----------------------------------------------------------------------------------------⎞ = 31.7 ksi⎝ + 28 5 0.94 ( + 0.5 + ( )  ( ⎠( ) 2 1.5 )2 0.375) 

which is greater than fc, therefore the blocked beam is adequate.  Alternatively a larger 
end plate could be attached to the post. If a 3/4 in end plate is used the applied stress is:

R 239f = ---------------------------------------------------- = ------------------------------------------------------------------------------------ = 27.8 ksicp 5 tf tep) + 2k1)2tp (5 0.94 ( + 0.75) + 2 1.5 ) (( ( + ( )  2 0.375) 

which is less than Fcb, therefore adequate without the use of blocking. 

7.3.7 Post Compression Strength 

The maximum applied load in the 25 ft long posts, including the weight of the post, is:

19.4 25 (0.490( ) )P = R + = 239 + ---------------------------------------- = 241 kipWpost 144 

giving an applied stress in the post of:

P 241f = ------ = ---------- = 12.4 ksicp A 19.4p 

The euler stress is given by:

π2E π2(29000)F = ---------------- = -------------------------------------- = 124 ksi
e KL 1.0 25 12
⎛ ⎞ 2 ⎛ ( )( )⎞ 2
 

r 6.24 ⎠
⎝ ⎠  ⎝ 

and as Fe > 0.44Fy 

Fy 42
 
Fe 124
Fcp = 0.658 (0.6Fy) = 0.658 0.6 42 = ksi(  )( )  21.9 

which is greater than fc, therefore column is adequate. 

7.3.8 Flange-post Interaction, Web Yielding and Web Buckling in the Sill Beam 

A W14x120 can also be assumed for the sill beam, therefore the capacity for flange-post 
interaction, web yielding and web buckling are the same as for the cap beam.  As the 
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applied loads are also almost identical, there is no need to check the design of the blocked 
sill beam for these limit states. 

7.3.9 Corbel-flange Bending in Sill Beam 

The reaction from the corbels is given by:

R = P + = 241 + 15 0.120) = 243  kip (Wbeam 

giving an applied stress, assuming three corbels, of:

R 243 = --------- = ----------------------------- = 0.459 ksifbg Abg 3 12 (14.7( ) ) 

Assuming no blocking to simply the calculation (although blocking is required for local 
post yielding) the effective allowable bearing stress for the corbel-flange is given by:

14tf
2Fb + Fcb'Ab 14 0.942)( ) + 0( 22= --------------------------------------- = -------------------------------------------- = 0.810 ksiFgf Ap 2 12 (14.0( ) ) 

which is greater than fbg, therefore the corbel-flange is adequate. 

7.3.10 Corbels 

The applied bearing stress in the corbels is equal to that given above for the bearing of the 
corbel-flange. The allowable stress in the corbels is:

F ' = 0.45 ksic⊥ 

which is approximately equal to fbg, therefore three corbels are adequate. 
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SECTION 8
 
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS
 

8.1 Summary and Conclusions 

A series of experimental and finite element studies were performed on post and beam 
connections, typical of those found in bridge falsework, to identify the causes of observed 
failures in the field and identify the critical limit states for design.  Configurations 
investigated included: steel still and cap beams with timber posts, beams with steel posts, 
rigid patch loads on beams, and beams without any lateral restraint.  Using these 
configurations various limit states, including: flange bending, post crushing, post yielding 
web yielding and post-elastic crippling, lateral web buckling and corbel crushing were 
identified. 

The conclusions from experimental and finite element studies are: 

• The axial compression failure stresses of three 4 ft. long, 12 x 12 in. Number 2 
Douglas Fir timber posts ranged between 1670 and 2770 psi. 

• The axial bearing strength perpendicular to the grain for a 12 x 12 in Number 2 
Douglas Fir timber corbel is 540 psi. 

• The axial compression failure stresses of three 12 to 14 in. long, 12 x 12 in. Number 
2 Douglas Fir timber blocks ranged between 3220 and 4820 psi. 

• The steel sections had material strengths around 0 to 12% percent greater than the 
minimum specified yield stress. 

• Sill beams and short timber posts with timber corbels typically fail through crushing 
of the corbels and possible bending of the flange adjacent to the corbel. 

• Without timber corbels, sill and cap beams and timber posts typically fail through 
bending of the flange and localized crushing of the post. 

• Steel post joint regions typically fail though localized yielding of the post in the 
region where the post is bearing onto the beam flange near the web. 

• If the post applying the patch loading has sufficient capacity and rigidity, a beam 
with a relative thick web is likely to fail by web yielding, with post-elastic crippling 
occurring after the yielding. Web yielding is most likely to govern over web 
crippling for typical “stocky” falsework beams. 

• Unbraced, unstiffened beams may fail through lateral buckling of the web, 
particularly double stacked beams. 
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• Blocks placed between the flanges and web may increase the flange bending and web 
yielding capacity of the beam, although their effect in increasing lateral buckling 
capacity is inconclusive. 

• An eccentricity between the flange and post of around 3 times the web thickness 
reduces the flange bending, yielding and buckling capacity by around 10%. 

8.2 Recommendations 

From the experimental and finite element results, a series of design equations were 
developed to calculate the capacity of the critical limit states.  Recommendations for the 
design of a falsework bent are as follows: 

• Cap and sill beams should be designed for lateral buckling using the equation 
proposed based on a column buckling equation. If double stacked sill beams are 
used, the web height should be taken as the summation of the heights for the two 
beams. Bracing or fully welded stiffeners should be used in the cap and sill beams 
at the post locations if necessary to increase the lateral web buckling capacity.  The 
radius of gyration in the equation can be increased accordingly with stiffeners. 

• Cap and sill beams should be designed for web yielding using a 1:1 stress gradient 
through the flange. This uses the same equation as currently in the falsework 
manual, although the name “web crippling” should be changed to “web yielding” to 
be consistent with AISC specifications. 

• The cap and sill beams should be designed for localized flange bending when a 
timber post is used. Two equations have been proposed for this purpose.  The 
simplified equation is adequate but typically conservative, resulting in an increased 
need for blocking. The more elaborate interaction equation (for the interaction 
between flange bending and post crushing) could be used if additional accuracy is 
desired. The inclusion of the more elaborate equation in the specifications is left to 
the descretion of the falsework committee. 

• A steel post should be designed for localized yielding where the ends of the post 
bearing onto the adjacent beams using a similar expression to that for web yielding 
except with a 2.5:1 stress gradient assumed. 

• The timber and steel posts need to be designed for axial loads based on their length as 
ordinary columns.  For the timber post, equations based on the NDS specifications 
are more conservative than the Caltrans Falsework specifications and are 
recommended based on the limited post experimental data.  A plot showing the CP 
factor (Figure 6-1) could be included in the design guidelines to simplify the 
calculation. An allowable stress of 1000 psi is tentatively recommended for 
Number 2 Douglas Fir posts. For the steel post the AISC design equations would 
allow for smaller posts than the Caltrans specifications and are also recommended. 
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• The bottom flange of a sill beam should be checked for flange bending where bearing 
on the sand jacks, blocks wedges and corbels based on the proposed equation. 

• The timber corbels should be designed for bearing using the current Caltrans 
allowable stress for timber members.  The allowable stress perpendicular to the 
grain for Number 2 Douglas Fir members in the NDS specifications is 
unconservative compared to the experimental data. 

• Blocking can be used to increase flange bending and web yielding capacity if 
necessary and is considered 100% effective for increase flange bending capacity 
with a timber post, but only 30% effective for increasing flange bending/post 
bearing capacity with a steel post.  It is considered 50% effective for increasing web 
yielding capacity. 

• Any eccentricity between the centroid of the beam and post should be minimized, but 
at most it should be no more than 3 times the beam web thickness, for a reduction in 
flange bending and web buckling capacity of no more than 10%. 
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APPENDIX 1
 
PREDICTION OF THE FLANGE BENDING, POST AND CORBEL CAPACITIES
 

USING LOAD AND RESISTANCE FACTOR DESIGN 

Overview 

Equations for designing the critical components in a falsework bend are given below using 
the Load and Resistance Factor Design (LRFD) format. 

Cap Beam Members for Flexure and Shear 

Use conventional theory for flexure and shear. 

Lateral Web Buckling in a Cap and Sill Beam 

φ R = φ tc n c wleffFcr 

Fcr = 0.877Fe 

π2E =Fe 6h⎛ ⎞ 2
 

⎝ ⎠ 
tw 

Assuming Fc < 0.44Fy 

Web Yielding in a Cap and Sill Beam 

φ R = φ (2k + d )F tc n c p yw w 

Flange Bending-Post Crushing in a Cap and Sill Beam with a Timber Post 

Method 1 - Simplified Method 

φRnf = φb11t2
f Fyf + λφcFc'Ab 

Method 2 - Interaction Method 

1 –---
21 1⎛ ⎞Pu < ------------ + ----------------⎝ 2 2⎠φRnf λφRnp 
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φRnf = φb18t2
f Fyf + λφcFc'Ab
 

λφR = λφ F 'A
np c c p 

Localized Post Yielding of a Steel Post from Bearing of the Cap and Sill Beam 

φR	 = φ (5 t( f + t ) + 2k1)F 2t + φ 0.3F 'Abnp c ep yp p c c

Timber Post Design 

λφ P = λφ F 'Ac n c c p 

Steel Post Design

φ P	 = φ A Fc n c p cr
 

F = 0.877F  when Fc < 0.44Fy
cr e 

Fy


⎛ Fe ⎞
 Fcr = ⎜0.658 ⎟Fy when Fc > 0.44Fy

⎝ ⎠
 

π2EFe =	 ----------------
⎛KL⎞ 2
 

⎝ r ⎠
 

Corbel-flange Bending in a Sill Beam 

φRnf	 = φb14t2
f Fyf + λφcFc'Ab 

Corbel Capacity 

λφ R = λφ F 'Abgc n c c⊥
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APPENDIX 2
 

GENERAL LAYOUT AND TYPICAL CROSS SECTIONS OF BRIDGE
 
FALSEWORK FOR THE ARCH ROAD STAGE 4 BRIDGE
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