
  CHAPTER 5
 

LATERAL LOADING OF A SHAFT IN LAYERED SOIL
 

USING THE STRAIN WEDGE MODEL
 

5.1 INTRODUCTION 

The strain wedge (SW) model is an approach that has been developed to predict the response of a 

flexible pile under lateral loading (Norris 1986, Ashour et al. 1996 and Ashour et al. 1998). The 

main concept associated with the SW model is that traditional one-dimensional Beam on Elastic 

Foundation (BEF) pile response parameters can be characterized in terms of three-dimensional 

soil-pile interaction behavior. The SW model was initially established to analyze a free-head 

pile embedded in one type of uniform soil (sand or clay). However, the SW model has been 

improved and modified through additional research to accommodate a laterally loaded pile 

embedded in multiple soil layers (sand and clay). The SW model has been further modified to 

include the effect of pile head conditions on soil-pile behavior. The main objective behind the 

development of the SW model is to solve the BEF problem of a laterally loaded pile based on the 

envisioned soil-pile interaction and its dependence on both soil and pile properties. 

The problem of a laterally loaded pile in layered soil has been solved by Reese (1977) as a BEF 

based on modeling the soil response by p-y curves. However, as mentioned by Reese (1983), the 

nonlinear p-y curve employed does not account for soil continuity and pile properties such as 

pile stiffness, pile cross-section shape and pile head conditions. 

The SW model was initially developed to assess the response of a laterally loaded long (slender) 

pile (diameter < 3 ft). As a result, the effect of the vertical side shear (Vv) along the side of a 

large diameter shaft should be integrated in the SW model analysis to account for such a 

significant parameter in the analysis of large diameter shafts (Fig. 5-1). In addition, the 

characterization of the intermediate and short shafts should be incorporated in the SW model 

analysis to cover broader aspects of the shaft/pile analysis. 
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5.2	 THE THEORETICAL BASIS OF STRAIN WEDGE MODEL 

CHARACTERIZATION 

The SW model parameters are related to an envisioned three-dimensional passive wedge of soil 

developing in front of the pile. The basic purpose of the SW model is to relate stress-strain

strength behavior of the soil in the wedge to one-dimensional BEF parameters. The SW model 

is, therefore, able to provide a theoretical link between the more complex three-dimensional soil

pile interaction and the simpler one-dimensional BEF characterization. The previously noted 

correlation between the SW model response and BEF characterization reflects the following 

interdependence: 

•	 the horizontal soil strain (e) in the developing passive wedge in front of the pile to the 

deflection pattern (y versus depth, x) of the pile; 

•	 the horizontal soil stress change (Dsh) in the developing passive wedge to the soil-pile 

reaction (p) associated with BEF behavior; and 

•	 the nonlinear variation in the Young's modulus (E = Dsh/e) of the soil to the nonlinear 

variation in the modulus of soil subgrade reaction (Es = p/y) associated with BEF 

characterization. 

The analytical relations presented above reflect soil-pile interaction response characterized by 

the SW model that will be illustrated later. The reason for linking the SW model to BEF analysis 

is to allow the appropriate selection of BEF parameters to solve the following fourth-order 

ordinary differential equation to proceed. 

4	 2  2   d y   d y  d M R  EI + E (x) y+ P + = 0	 (5-1)  4   s x   2   2Ł d x ł Ł d x ł  d x  Ł ł

where MR is the resisting bending moment per unit length induced along the shaft length (x) due 

to the vertical side shear (VV) (Fig. 5-1). The closed form solution of the basic form of the above 

equation has been obtained by Matlock and Reese (1961) for the case of uniform soil.  In order 

to appreciate the SW model’s enhancement of BEF analysis, one should first consider the 

governing analytical formulations related to the passive wedge in front of the shaft, the soil’s 
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stress-strain and the vertical side shear (t-z curve) formulations, and the related soil-pile 

interaction. 

5.3 SOIL PASSIVE WEDGE CONFIGURATION 

The SW model represents the mobilized passive wedge in front of the pile which is characterized 

by base angles, jm and bm, the current passive wedge depth h, and the spread of the wedge fan 

angle, j  m (the mobilized friction angle of soil). The horizontal stress change at the passive 

wedge face, Dsh, and side shear, t, act as shown in Fig. 5-2. One of the main assumptions 

associated with the SW model is that the deflection pattern of the pile is taken to be linear over 

the controlling depth of the soil near the pile top resulting in a linearized deflection angle, d, as 

seen in Fig. 5-3. 

The SW model makes the analysis simpler because forces (F1) on the opposite faces cancel, but 

the real zone of stress is like the dashed outline shown in Fig. 5-4b which includes side shear 

influence (ô) on the shape of the strained zone. However, the ô perpendicular to the face of the 

pile is still considered in the SW model analysis. As seen in Fig. 5-4c, the horizontal equilibrium 

in the SW wedge model is based on the concepts of the conventional triaxial test.  The soil at the 

face of the passive wedge is represented by a soil sample in the conventional triaxial test where 

s vo  (i.e. K = 1) and the horizontal stress change, Äóh, (from pile loading) are the confining and 

deviatoric stresses in the triaxial test, respectively. 

The relationship between the actual (closed form solution) and linearized deflection patterns of 

long pile/shaft has been established by Norris (1986) (h/ Xo = 0.69). As seen in 5-5, the 

relationship (h/Xo) between the actual and linearized deflection for the short shaft is equal to 1, 

and varies for the intermediate shafts from 0.69 at (L/T = 4) to 1 at (L/T = 2). As presented in 

Chapter 2, L is the embedded length of the shaft and T is the initial relative shaft stiffness. 

It should be noted that the idea of the change in the full passive wedge (mobilized passive wedge 

at different levels of deflection) employed in the SW model has been shown experimentally by 

Hughes and Goldsmith (1978) and previously established by Rowe (1956). 
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Changes in the shape and depth of the upper passive wedge, along with changes in the state of 

loading and shaft/pile deflection, occur with change in the uniform strain (e) in the developing 

passive wedge. As seen in Fig. 5-6, two mobilized (tip to tip) passive wedges are developed in 

soil in front of the short shaft. Because of the shaft straight-line deflection pattern with a 

deflection angle d, the uniform soil strain (e) will be the same in both (i.e. upper and lower) 

passive wedges. 

As shown in Figs. 5-5 and 5-6, the deflection pattern is no longer a straight line for the 

intermediate shaft, and the lower passive wedge has a curved shape that is similar to the 

deflection pattern. Accordingly, the soil strain (ex) at depth x below the zero crossing will not be 

uniform and will be evaluated in an iterative method based on the associated deflection at that 

depth (Fig. 5-6c) 

The lateral response of the short shaft is governed by both (upper and lower) developed passive 

wedges (Fig. 5-6). However, with the intermediate shaft, less soil strain (i.e. stress on soil) 

develops in the lower passive soil wedge (the inverted wedge below the point of zero crossing) 

compared to the upper one (Fig. 5-6). The non-uniform soil strain (ex) in the lower passive soil 

wedge (Fig. 5-6c) becomes much smaller compared to the strain in the upper soil wedge when 

the shaft deflection approaches the deflection pattern of the long shaft. Since the lateral 

deflection of the long pile/shaft below the zero crossing is always very small, the associated soil 

strain and developing passive wedge will be very small as well. Consequently, the developing 

upper passive soil wedge (and uniform strain therein) dominates the lateral response of the long 

pile/shaft; hence the adopted name “strain wedge” (SW). 

As seen in Figs. 5-3 and 5-6, the configuration of the wedge at any instant of load and, 

therefore,base angle 

jmQm = 45 - (5-2)
2 

mobilized friction angle, jm, and wedge depth, h, is given by the following equation: 

or its complement 
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jmb = 45 + (5-3)
m 2
 

The width, BC , of the wedge face at any depth is 

BC = D +( h - x)2 tan b m tan jm (5-4) 

where x denotes the depth below the top of the studied passive wedge, and D symbolizes the 

width of the pile cross-section. It should be noted that the SW model is based upon an effective 

stress analysis of both sand and clay soils. As a result, the mobilized fanning angle, jm, is not 

zero in clay soil as assumed by Reese (1958, 1983). 

The above equations are applied to the upper and lower passive wedges in the case of short and 

intermediate shafts where x for any point on the lower passive wedge (Fig. 5-6c) is measured 

downward from the zero crossing and replaces the term (h - x) in Eqn. 5-4.  Therefore, 

dxex = e (y x / x) / d = e ( ) (5-5)
d 

where e and d are the uniform soil strain and linearized shaft deflection angle of the upper 

passive wedge, respectively. yx and dx are the shaft deflection and secant deflection angle at 

depth x below the zero crossing (Fig. 5-6c). 

5.4 STRAIN WEDGE MODEL IN LAYERED SOIL 

The SW model can handle the problem of multiple soil layers of different types. The approach 

employed, which is called the multi- sublayer technique, is based upon dividing the soil profile 

and the loaded pile into sublayers and segments of constant thickness, respectively, as shown in 

Fig. 5-7. Each sublayer of soil is considered to behave as a uniform soil and have its own 

properties according to the sublayer location and soil type.  In addition, the multi- sublayer 

technique depends on the deflection pattern of the embedded pile being continuous regardless of 

the variation of soil types. However, the depth, h, of the deflected portion of the pile is 

controlled by the stability analysis of the pile under the conditions of soil-pile interaction.  The 

effects of the soil and pile properties are associated with the soil reaction along the pile by the 
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Young's modulus of the soil, the stress level in the soil, the pile deflection, and the modulus of 

subgrade reaction between the pile segment and each soil sublayer.  To account for the 

interaction between the soil and the pile, the deflected part of the pile is considered to respond as 

a continuous beam loaded with different short segments of uniform load and supported by 

nonlinear elastic supports along soil sublayers, as shown in Fig. 5-8.  At the same time, the point 

of zero deflection (Xo in Fig. 5-5) for a pile in a particular layered soil varies according to the 

applied load and the soil strain level. 

The SW model in layered soil provides a means for distinguishing layers of different soil types 

as well as sublayers within each layer where conditions (e50, SL, jm) vary even though the soil 

and its properties (‘g, e or Dr, j , etc.) remain the same. As shown in Fig. 5-9 , there may be 

different soil layers and a transition in wedge shape from one layer to the next, with all 

components of the compound wedge having in common the same depth h. In fact, there may be 

a continuous change over a given sublayer;  but the values of stress level (SL) and mobilized 

friction angle (jm) at the middle of each sublayer of height, Hi, are treated as the values for the 

entire sublayer. 

As shown in Fig. 5-9, the geometry of the compound passive wedge depends on the properties 

and the number of soil types in the soil profile, and the global equilibrium between the soil layers 

and the loaded pile. An iterative process is performed to satisfy the equilibrium between the 

mobilized geometry of the passive wedge of the layered soil and the deflected pattern of the pile 

for any level of loading. 

While the shape of the wedge in any soil layer depends upon the properties of that layer and, 

therefore, satisfies the nature of a Winkler foundation of independent “soil” springs in BEF 

analysis, realize that there is forced interdependence given that all components of the compound 

wedge have the same depth (h) in common. Therefore, the mobilized depth (h) of the compound 

wedge at any time is a function of the various soils (and their stress levels), the bending stiffness 

(EI), and head fixity conditions (fixed, free, or other) of the pile.  In fact, the developing depth of 

the compound wedge can be thought of as a retaining wall of changing height, h. Therefore, the 

resultant “soil” reaction, p, from any soil layer is really a “soil-pile” reaction that depends upon 
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the neighboring soil layers and the pile properties as they, in turn, influence the current depth, h. 

In other words, the p-y response of a given soil layer is not unique. The governing equations of 

the mobilized passive wedge shape are applied within each one- or two-foot sublayer i (of a 

given soil layer I) and can be written as follows: 

(jm )i(Qm )i = 45 -	 (5-6)
2 

(jm )i( bm )i = 45+ (5-7)
2 

( BC ) = D +( h - xi ) 2 ( tan b ) ( tan j )	 (5-8)
i	 m i m i 

where h symbolizes the entire depth of the compound passive wedge in front of the pile and xi 

represents the depth from the top of the pile or compound passive wedge to the middle of the 

sublayer under consideration. Equations 5-6 through 5-8 are applied at the middle of each 

sublayer. In the case of short and intermediate shafts, xi is measured downward from the point of 

zero crossing and replaces the term (h - xi) in Eqn 5-8, as shown in Fig. 5-6, for analysis of the 

lower wedge. 

5.5	 SOIL STRESS-STRAIN RELATIONSHIP 

The horizontal strain (e) in the soil in the passive wedge in front of the pile is the predominant 

parameter in the SW model; hence, the name “strain wedge”. Consequently, the horizontal stress 

change (Dsh) is constant across the width of the rectangle BCLM (of face width BC of the 

passive wedge ), as shown in Fig. 5-4.  The stress-strain relationship is defined based on the 

results of the isotropically consolidated drained (sand) or undrained (clay) triaxial test.  These 

properties are summarized as follows: 

•	 The major principle stress change (Dsh) in the wedge is in the direction of pile 

movement, and it is equivalent to the deviatoric stress in the triaxial test as shown in Fig. 

5-4 (assuming that the horizontal direction in the field is taken as the axial direction in the 

triaxial test). 

•	 The vertical stress change (Dsv) and the perpendicular horizontal stress change (Dsph) 

equal zero, corresponding to the standard triaxial compression test where deviatoric stress 
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is increased while confining pressure remains constant. 

•	 The initial horizontal effective stress is taken as 

= K	 =sho	 svo svo 

where K=1 due to pile installation effects. Therefore, the isotropic confining pressure in 

the triaxial test is taken as the vertical effective stress (‘svo) at the associated depth. 

•	 The horizontal stress change in the direction of pile movement is related to the current 

level of horizontal strain (e) and the associated Young's modulus in the soil, as are the 

deviatoric stress and the axial strain, to the secant Young’s modulus (E = Dsh/e) in the 

triaxial test. 

•	 Both the vertical strain (ev ) and the horizontal strain perpendicular to pile movement (eph) 

are equal and are given as 

ev = eph = -ne 

where n is the Poisson’s ratio of the soil. 

It can be demonstrated from a Mohr’s circle of soil strain, as shown in Fig. 5-10, that shear 

strain, g, is defined as 

g 1	 1 
= ( e - ev )sin 2 Qm = e( 1+n )sin 2 Qm	 (5-9)

2 2	 2 

The corresponding stress level (SL) in sand (see Fig. 5-11) is 

2D	 tan ( 45+j / 2 ) -1sh	 mSL= =	 (5-10)
2Dshf	 tan ( 45+j / 2 ) - 1 

where the horizontal stress change at failure (or the deviatoric stress at failure in the triaxial test) 

is 

Ø 2 j øD shf = svo Œtan 45 + - 1 œ	  (5-11)
2 łº Ł ß 
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In clay, 

DshSL = ; Dshf = 2 Su (5.12)
D shf 

where Su represents the undrained shear strength which may vary with depth. Determination of 

the values of SL and jm in clay requires the involvement of an effective stress analysis which is 

presented later in this chapter. 

The relationships above show clearly that the passive wedge response and configuration change 

with the change of the mobilized friction angle (jm) or stress level (SL) in the soil. Such 

behavior provides the flexibility and the accuracy for the strain wedge model to accommodate 

both small and large strain cases. The above equations are applied for each soil sublayer along 

the shaft in order to evaluate the varying stress level in the soil and the geometry of the passive 

wedges. 

A power function stress-strain relationship is employed in SW model analysis for both sand and 

clay soils. It reflects the nonlinear variation in stress level (SL) with axial strain (e) for the 

condition of constant confining pressure. To be applicable over the entire range of soil strain, it 

takes on a form that varies in stages as shown in Fig. 5-12. The advantage of this technique is 

that it allows the three stages of horizontal stress, described in the next section, to occur 

simultaneously in different sublayers within the passive wedge. 

5.5.1 Horizontal Stress Level (SL) 

Stage I (ee ££ ee 50% ) 

The relationship between stress level and strain at each sublayer (i) in the first stage is assessed 

using the following equation, 

li eSLi = exp ( - 3.707 SLi ) (5.13)( e50 )i 

where 3.707 and l ( l= 3.19) represent the fitting parameters of the power function relationship, 

and e50 symbolizes the soil strain at 50 percent stress level at the associated confining pressure. 
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Stage II ( ee 50% ££ ee ££ ee 80 % ) 

In the second stage of the stress-strain relationship, Eqn. 5.13 is still applicable. However, the 

value of the fitting parameter l is taken to vary in a linear manner with SL from 3.19 at the 50 

percent stress level to 2.14 at the 80 percent stress level as shown in Fig. 5-12b. 

Stage III ( ee ‡‡ ee 80% ) 

This stage represents the final loading zone which extends from 80 percent to 100 percent stress 

level. The following equation is used to assess the stress-strain relationship in this range, 

Ø 100 ei ø 
SLi = exp Œ ln 0.2 + œ ; SLi ‡ 0.80 (5-14) 

º ( m e + qi ) ßi 

where m=59.0 and q=95.4 e50 are the required values of the fitting parameters.
 

The three stages mentioned above are developed based on unpublished experimental results
 

(Norris 1977). In addition, the continuity of the stress-strain relationship is maintained along the
 

SL-e curve at the merging points between the mentioned stages.
 

As shown in Fig. 5-13, if e50 of the soil is constant with depth (x), then, for a given horizontal
 

strain (e), SL from Eqns 5-13 or 5-14 will be constant with x. On the other hand, since strength,
 

Dshf, varies with depth (e.g., see Eqns. 5-11 and 5-12), Dsh (= SL Dshf ) will vary in a like
 

fashion. However, e50 is affected by confining pressure (‘svo) in sand and Su in clay. Therefore,
 

SL for a given e will vary somewhat with depth.
 

The Young’s modulus of the soil from both the shear loading phase of the triaxial test and the
 

strain wedge model is
 

( Dsh ) SLi ( Dshf )
Ei = i = i (5.15)

e e 
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It can be seen from the previous equations that stress level, strain and Young's modulus at each 

sublayer (i) depend on each other, which results in the need for an iterative solution technique to 

satisfy the equilibrium between the three variables. 

5.6 SHEAR STRESS ALONG THE PILE SIDES (SLt) 

Shear stress (t) along the pile sides in the SW model (see Fig. 5-4) is defined according to the 

soil type (sand or clay). 

5.6.1 Pile Side Shear in Sand 

In the case of sand, the shear stress along the pile sides depends on the effective stress (svo) at the 

depth in question and the mobilized angle of friction between the sand and the pile (js). The 

mobilized side shear depends on the stress level and is given by the following equation, 

ti = ( svo )i tan ( js )i ; where tan (js )i = 2 tan ( jm )i (5-16) 

In Eqn. 5-16, note that mobilized side shear angle, tanjs, is taken to develop at twice the rate of 

the mobilized friction angle (tanjm) in the mobilized wedge. Of course, js is limited to the fully 

developed friction angle (j) of the soil. 

5.6.2 Pile Side Shear Stress in Clay 

The shear stress along the pile sides in clay depends on the clay’s undrained shear strength.  The 

stress level of shear along the pile sides (SLt) differs from that in the wedge in front of the pile. 

The side shear stress level is function of the shear movement, equal to the pile deflection (y) at 

depth x from the ground surface. This implies a connection between the stress level (SL) in the 

wedge and the pile side shear stress level (SLt). Using the Coyle-Reese (1966) “t-z” shear stress 

transfer curves (Fig. 5-14), values for SLt can be determined. The shear stress transfer curves 

represent the relationship between the shear stress level experienced by a one-foot diameter pile 

embedded in clay with a peak undrained strength, Su, and side resistance, tult (equal to z times 

the adhesional strength aSu), for shear movement, y. The shear stress load transfer curves of 

Coyle-Reese can be normalized by dividing curve A (0 < x < 3 m) by z = 0.53, curve B (3 < x < 
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6 m) by z = 0.85, and curve C ( x > 6 m) by z = 1.0. These three values of normalization (0.53, 

0.85, 1.0) represent the peaks of the curves A, B, and C, respectively, in Fig. 5-15a. Figure 5

15b shows the resultant normalized curves. Knowing pile deflection (y), one can assess the 

value of the mobilized pile side shear stress (t) as 

ti = ( SLt )i ( ult ) (5-17)t i 

where
 

( tult )i =z (a Su )i (5-18)
 

and a indicates the adhesion value after Tomlinson (1957). 

The normalized shear stress load transfer curves can be represented by the following equations.
 

For the normalized curves A (x < 3 m) and B (3 < x < 6 m),
 

SLt = 12.9 y D - 40.5 y2
D2 (5-19)
 

For the normalized curve C (x > 6 m)
 

SLt = 32.3 y D - 255 y2
D2 (5-20)
 

where y is in cm and D in m. 

From the discussion above, it is obvious that SLt varies nonlinearly with the pile deflection, y, at 

a given soil depth, x. Also, SLt changes nonlinearly with soil depth for a given value of soil 

displacement/strain (see Fig. 5-15). These concepts are employed in each sublayer of clay. 

5.7 SOIL PROPERTY CHARACTERIZATION IN THE STRAIN WEDGE MODEL 

One of the main advantages of the SW model approach is the simplicity of the required soil 

properties necessary to analyze the problem of a laterally loaded pile. The properties required 

represent the basic and the most common properties of soil, such as the effective unit weight and 

the angle of internal friction or undrained strength. 
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The soil profile is divided into one or two foot sublayers, and each sublayer is treated as an 

independent entity with its own properties. In this fashion, the variation in soil properties or 

response (such as e50 and j in the case of sand, or Su and ‘j in the case of clay) at each sublayer 

of soil can be explored. It is obvious that soil properties should not be averaged at the midheight 

of the passive wedge in front of the pile for a uniform soil profile (as in the earlier work of Norris 

1986), or averaged for all sublayers of a single uniform soil layer of a multiple layer soil profile. 

5.7.1 Propert ies Employed for Sand Soil 

• Effective unit weight (total above water table, buoyant below), ‘g 

• Void ratio, e, or relative density, Dr 

• Angle of internal friction, j 

• Soil strain at 50% stress level, e50 

While standard subsurface exploration techniques and available correlations may be used to 

evaluate or estimate ‘g , e or Dr, and j, some guidance may be required to assess e50. 

The e50 represents the axial strain (e1 ) at a stress level equal to 50 percent in the e1-SL 

relationship that would result from a standard drained (CD) triaxial test.  The confining 

(consolidation) pressure for such tests should reflect the effective overburden pressure (‘svo) at 

the depth (x) of interest. The e50 changes from one sand to another and also changes with density 

state. In order to obtain e50 for a particular sand, one can use the group of curves shown in Fig. 

5-16 (Norris 1986) which show a variation based upon the uniformity coefficient, Cu, and void 

ratio, e. These curves have been assessed from sand samples tested with “frictionless” ends in 

CD tests at a confining pressure equal to 42.5 kPa (Norris 1977).  Since the confining pressure 

changes with soil depth, e50, as obtained from Fig. 5-16, should be modified to match the existing 

pressure as follows: 

( ) 0.2 
svo i( e50 ) = ( e50 ) (5-21)i 42.5 42.5Ł ł 
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Ø 2 ji ø( Dshf ) = ( s ) tan 45+ 
2 ł 

- 1 (5-22)i vo i Œ œ
º Ł ß 

where ‘svo should be in kPa. 

5.7.2 The Properties Employed for Clay 

• Effective unit weight ‘g 

• Plasticity index, PI 

• Effective angle of friction, ‘j 

• Undrained shear strength, Su 

• Soil strain at 50% stress level, e50 

Plasticity index, PI, and undrained shear strength, Su, are considered the governing properties 

because the effective angle of internal friction, ‘j, can be estimated from the PI based on Fig. 5

17. The e50 from an undrained triaxial test (UU at depth x or CU with s3  =‘svo) can be 

estimated based on Su as indicated in Fig. 5-18. 

An effective stress (ES) analysis is employed  with clay soil as well as with sand soil. The reason 

behind using the ES analysis with clay, which includes the development of excess porewater 

pressure with undrained loading, is to define the three-dimensional strain wedge geometry based 

upon the more appropriate effective stress friction angle,‘j. The relationship between the 

normally consolidated clay undrained shear strength, Su, and ‘svo is taken as 

Su = 0.33svo (5-23) 

assuming that Su is the equivalent undrained standard triaxial test strength.  The effective stress 

analysis relies upon the evaluation of the developing excess porewater pressure based upon 

Skempton's equation (1954), i.e. 

Du= B [ Ds3 + Au ( Ds1 - Ds3 ) ] (5-24) 
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where B equals 1 for saturated soil. Accordingly, 

Du= Ds3 + Au ( Ds1 - Ds3 )	 (5-25) 

Note that Ds3 =0 both in the shear phase of the triaxial test and in the strain wedge.  Therefore, 

the mobilized excess porewater pressure is 

Du= Au Ds1	 (5-26) 

where Ds1  represents the deviatoric stress change in the triaxial test and Dsh in the field, i.e. 

Du = Au Dsh	 (5-27) 

Therefore, using the previous relationships, the Skempton equation can be rewritten for any 

sublayer (i) as follows: 

( Du ) = ( Au ) SLi ( Dshf ) = ( Au ) SLi 2 ( Su )	 (5-28)i i i i i 

The initial value of parameter Au is 0.333 and occurs at very small strain for elastic soil response. 

In addition, the value of parameter Auf that occurs at failure at any sublayer (i) is given by the 

following relationship 

1 1 /( S u )i 1
(	 A )i = 1+ - (5-29)uf

2 ( ) sin jŁ svo i i ł 

after Wu (1966) as indicated in Fig. 5-19. 

In Eqn. 5.29, ‘j symbolizes the effective stress angle of internal friction; and, based on Eqn. 5

23, Su/‘svo equals 0.33. However, Au is taken to change with stress level in a linear fashion as 

( Au )i = 0.333+ SLi [( Auf )i - 0.333 ]	 (5-30) 

5-15
 



  

    
  

  
    

 
  
 

 

  

           

By evaluating the value of Au, one can effectively calculate the excess porewater pressure, and 

–then can determine the value of the effective horizontal stress, (svo + Dsh - Du), and the effective 

–confining pressure, (svo - Du) at each sublayer, as shown in Fig. 5-19.  Note that the mobilized 

–effective stress friction angle, jm, can be obtained from the following relationship. 

( j ) ( + Ds - Du)2 m i svo h itan 45+ = (5-31) 
Ł 2 ł (svo - Du)i 

The targeted values of ‘jmi and SLi in a clay sublayer and at a particular level of strain (e) can be 

obtained by using an iterative solution that includes Eqns 5-12 through 5-14, and 5-28 through 5

31. 

5.8 SOIL-PILE INTERACTION IN THE STRAIN WEDGE MODEL 

The strain wedge model relies on calculating the modulus of subgrade reaction, Es, which 

reflects the soil-pile interaction at any level of soil strain during pile loading.  Es also represents 

the secant slope at any point on the p-y curve, i.e. 

p
Es = (5-32) 

y 

Note that p represents the force per unit length of the pile or the BEF soil-pile reaction, and y 

symbolizes the pile deflection at that soil depth. In the SW model, Es is related to the soil’s 

Young's modulus, E, by two linking parameters, A and ys. It should be mentioned here that the 

SW model establishes its own Es from the Young's modulus of the strained soil, and therefore, 

one can assess the p-y curve using the strain wedge model analysis. Therefore, Es should first be 

calculated using the strain wedge model analysis to identify the p and y values. 

Corresponding to the horizontal slice (a soil sublayer) of the passive wedge at depth x (see Figs. 

5-2 and 5-4), the horizontal equilibrium of horizontal and shear stresses is expressed as 

pi = ( Dsh )i BCi S1+ 2ti D S 2 (5-33) 

5-16
 



  
  

  
 

  
  

  
  

       
  

       
   

         
        

 
  
 

                 
   

   
         

        
 

  
 

           

  

where S1 and S2 equal to 0.75 and 0.5, respectively, for a circular pile cross section, and equal to 

1.0 each for a square pile (Briaud et al. 1984).  Alternatively, one can write the above equation as 

follows: 

pi / D BC i S1 2 ti S 2Ai = = + (5-34)( Dsh )i D ( Dsh )i 

where A symbolizes the ratio between the equivalent pile face stress, p/D, and the horizontal 

stress change, Dsh, in the soil. (In essence, it is the multiplier that, when taken times the 

horizontal stress change, gives the equivalent face stress.) From a different perspective, it 

represents a normalized width (that includes side shear and shape effects) that, when multiplied 

by Dsh yields p/D. By combining the equations of the passive wedge geometry and the stress 

level with the above relationship, one finds that 

( h - x ) 2 ( tan b tan j ) 2 S ( ) ( tan f )i m m i 2 svo i s iAi = S1 1+ + in sand (5-35)

Ł D ł ( Dsh )i
 

( h - xi ) 2 ( tan b tan jm 
)
i S 2 ( SLt )iAi = S1 1+ m + in clay (5-36)

D SLiŁ ł 

Here the parameter A is a function of pile and wedge dimensions, applied stresses, and soil 

properties. However, given that Dsh = Ee in Eqn. 2.33, 

pi = Ai D ( D sh )i = Ai D Ei e (5-37) 

For the upper passive wedge, e represents the uniform soil strain and is replaced by ex for soil 

sublayers of the lower passive wedge. The second linking parameter, Ys, relates the soil strain in 

the SW model to the linearized pile deflection angle, d. Referring to the normalized pile 

deflection shape shown in Figs. 5-3 and 5-5 

gd = (5-38)
2 
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g gmax= sin 2 Qm (5-39)
2 2 

and 

gmax e - ( 1+n ) e 
= ev = (5-40)

2 2 2 

where g denotes the shear strain in the developing passive wedge. Using Eqns. 5-39 and 5.40, 

Eqn. 5-38 can be rewritten as 

e ( 1+n ) sin 2 Qmd = (5-41)
2 

Based on Eqn. 5-41, the relationship between e and d can expressed as 

Y = 
e 

(5-42)
d 

or 

2Y = (5-43)( 1+n ) sin 2 Qm 

The parameter y varies with the Poisson's ratio of the soil and the soil's mobilized angle of 

internal friction (jm) and the mobilized passive wedge angle (Qm). 

Poisson's ratio for sand can vary from 0.1 at a very small strain to 0.5 or lager (due to dilatancy) 

at failure, while the base angle, Qm, can vary between 45o (for jm = 0 at e= 0) and 25o (for, say, 

jm = 40o at failure), respectively. For this range in variation for n and jm, the parameter Y for 

sand varies between 1.81 and 1.74 with an average value of 1.77. In clay soil, Poisson's ratio is 

assumed to be 0.5 (undrained behavior) and the value of the passive wedge base angle, Qm, can 

vary between 45o (for jm = 0 at e = 0) and 32.5o (for, say, ‘jm = 25o at failure). Therefore, the 

value of the parameter y will vary from 1.47 to 1.33, with an average value of 1.4. 

It is clear from the equations above that employing the multi- sublayer technique greatly 

influences the values of soil-pile interaction as characterized by the parameter, Ai, which is 
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affected by the changing effective stress and soil strength from one sublayer to another.  The 

final form of the modulus of subgrade reaction can be expressed as 

pi Ai D e Ei Ai( Es )i = = = D Y Ei (5-44) 
yi d ( h - x ) ( h - xi )i 

It should be mentioned that the SW model develops its own set of non-unique p-y curves which 

are function of both soil and pile properties, and are affected by soil continuity (layering) as 

presented by Ashour et al. (1996). For the lower passive wedge, (h – xi) will be replaced by xi 

that is measured downward from the point of zero crossing (Fig. 5-6). 

5.9 PILE HEAD DEFLECTION 

As mentioned previously, the deflection pattern of the pile in the SW model is continuous and 

linear. Based on this concept, pile deflection can be assessed using a simplified technique which 

provides an estimation for the linearized pile deflection, especially yo at the pile head. By using 

the multi-sublayer technique, the deflection of the pile can be calculated starting with the base of 

the mobilized passive wedge and moving upward along the pile, accumulating the deflection 

values at each sublayer as shown in the following relationships and Fig. 5-20. 

e 
yi= Hi d i = H i (5-45)

Ys 

yo =S yi i = 1 ton (5-46) 

where the ys value changes according to the soil type (sand or clay), and Hi indicates the 

thickness of sublayer i and n symbolizes the current number of sublayers in the mobilized 

passive wedge. 

The main point of interest is the pile head deflection which is a function of not only the soil 

strain but also of the depth of the compound passive wedge that varies with soil and pile 

properties and the level of soil strain. 

5.10 ULTIMATE RESISTANCE CRITERIA IN STRAIN WEDGE MODEL 

5-19
 



 

               

The mobilized passive wedge in front of a laterally loaded pile is limited by certain constraint 

criteria in the SW model analysis. Those criteria differ from one soil to another and are applied 

to each sublayer.  Ultimate resistance criteria govern the shape and the load capacity of the 

wedge in any sublayer in SW model analysis.  The progressive development of the ultimate 

resistance with depth is difficult to implement without employing the multi- sublayer technique. 

5.10.1 Ultimate Resistance Criterion of Sand Soil 

The mobilization of the passive wedge in sand soil depends on the horizontal stress level, SL, 

and the pile side shear resistance, t. The side shear stress is a function of the mobilized side 

shear friction angle, js, as mentioned previously, and reaches its ultimate value (js = j) earlier 

than the mobilized friction angle, jm, in the wedge (i.e. SLt ‡ SL). This causes a decrease in the 

rate of growth of sand resistance and the fanning of the passive wedge as characterized by the 

second term in Eqns 5-33 and 5-35, respectively. 

Once the stress level in the soil of a sublayer of the wedge reaches unity (SLi = 1), the stress 

change and wedge fan angle in that sublayer cease to grow.  However, the width BC of the face 

of the wedge can continue to increase as long as e (and, therefore, h in Eqn. 5-8) increases. 

Consequently, soil-pile resistance, p, will continue to grow more slowly until a condition of 

initial soil failure (SLi = 1) develops in that sublayer.  At this instance, p = pult where pult in sand, 

given as 

( p )
i = ( Dshf )i BCi S1+ 2 (t f ) D S2 (5.47)ult i 

pult is “a temporary” ultimate condition, i.e. the fanning angle of the sublayer is fixed and equal 

to ji, but the depth of the passive wedge and, hence, BC continue to grow. The formulation 

above reflects that the near-surface “failure” wedge does not stop growing when all such 

sublayers reach their ultimate resistance at SL = 1 because the value of h at this time is not 

limited. Additional load applied at the pile head will merely cause the point at zero deflection 

and, therefore, h to move down the pile. More soil at full strength (SL = 1) will be mobilized to 
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the deepening wedge as BC, therefore, pult will increase until either flow around failure or a 

plastic hinge in the pile occurs. 

Recognize that flow around failure occurs in any sublayer when it is easier for the sand at that 

depth to flow around the pile in a local bearing capacity failure than for additional sand to be 

brought to failure and added to the already developed wedge. However, the value at which flow 

failure occurs [Ai = (Ault)i , (pult)i = (Dshf)i (Ault)i D] in sand is so large that it is not discussed 

here. Alternatively, a plastic hinge can develop in the pile when the pile material reaches its 

ultimate resistance at a time when SLi £ 1 and Ai < (Ault)i. In this case, h becomes fixed, and BCi 

and pi will be limited when SLi becomes equal to 1. 

5.10.2 Ultimate Resistance Criterion of Clay Soil 

The situation in clay soil differs from that in sand and is given by Gowda (1991) as a function of 

the undrained strength (Su)i of the clay sublayer. 

( pult ) = 10 (Su ) D S1+ 2 ( S u ) D S 2 (5-48)i i i 

Consequently, 

( p )ult i 

D ( pult )i( Ault )i = = = 5 S1+ S (5-49)2( Dshf ) D 2 ( Su )i i 

Ault indicates the limited development of the sublayer wedge geometry for eventual development 

of flow around failure (SLi = 1) and, consequently, the maximum fanning angle in that sublayer 

becomes fixed, possibly at a value jm £ ‘j. If a plastic hinge develops in the pile at SLi less 

than 1, then h will be limited, but BC, and pi will continue to grow until Ai is equal to Ault or pi is 

equal to (pult)i. 
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5.11 VERTICAL SIDE SHEAR RESISTANCE 

As seen in Fig. 5-21, the vertical side shear stress distribution around the shaft cross section is 

assumed to follow a cosine function. It is assumed that there is no contact (active pressure) on 

the backside of the shaft due to the lateral deflection. The peak (q) of side shear stress develops 

at angle q = 0 and decreases to zero at angle q = 90o. The total vertical side shear force (Vv) 

induced along a unit length of the shaft is expressed as 

p / 2

� p / 2Vv = 2 qr cosq dq = 2 q (r sin q)0 = D q (5-50)
0 

and the induced moment (Mx-x) per unit length of the shaft is given as 

p / 2 p / 2 

M x-x = 2 � (q r cosq dq ) (r cosq) = 2 qr 2 � cos 2 q dq 
0 0
 

p / 2
 

= 2 q r 2 

0 

1
2 

(cos2q + 1) dq 

(5-51)
p / 2 

= q r 2 (cos 2q + 1) dq 
0
 

p / 2

1 q D 2 p= q r 2 (sin 2q + q = 

Ł 2 ł0 8 

Mx-x represents the term MR in Eqn. 5-1. 

5.12 SHAFT BASE RESISTANCE 

The soil shear resistance at the base of the shaft (Vb) that is shown in Fig. 5-1 is a function of the 

soil shear stress (tb) induced at the contact surface between the soil and shaft base. The shear 

stress (tb) varies with lateral deflection of the shaft base and the axial load delivered at the shaft 

base. Based on the failure mechanism at the shaft base for sand and clay that are presented in 

Chapter 3 and 4, Fig. 5-22 shows the shear tress (tb) that develops at the shaft base embedded in 

sand or clay soil. Unlike the clay case, the ultimate shear resistance at the base of the shaft 

increases with the axial load carried by the shaft base (Figs. 4-1 and 5-22). 
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The shear resistance at the shaft base can be determined as follows, 

1. Using the lateral deflection at the shaft base (yb) that is obtained from the lateral shaft 

analysis with no shaft base resistance, the soil shear strain at the base (gb) is calculated as, 

ybg = (5-52)b 2 D 

where D is the shaft diameter, and the effective depth of the shear deformation is 

assumed to be equal to 2D 

2.	 In the first step of analysis, assume the normal strain (eb) equal to the shear strain (gb). 

Based on the normal stress strain relationship presented in Section 5.5.1, the stress level 

(SL) can be evaluated and the associated Poisson’s ratio (n) is calculated as follows, 

n = 0.1 + 0.4 SL (5-53) 

It should be noted the Dshf used in Eqns. 5-10 through 5-12 is constant with clay (Dshf  = 

2Su) and varies with the load carried by the shaft base in the case of sand (Figs. 4-1 and 

5-22), i.e. 

Ø 2 j øDshf = (s3) IV	 Œtan 45+ - 1 œ (5-54)
º Ł 2 ł ß 

In sand soil, the increase of the shaft base load (Fb = 0.6 qnet Ab = sd Ab = SL Dshf Ab) 

results in the increase of the accompanying confining pressure ( ) .s3 IV 

3.	 The induced normal strain (eb) is recalculated as follows, 

geb = b (5-55)
(1 + n) 

4.	 Repeat steps 2 and 3 to refine the value of eb by averaging the new and old values of eb 

until reaching the desired convergence. 

5. Compute the associated soil shear stress that develops on the shaft base (tb) as follows: 
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tb = SL Su	 (Clay) (5-56a) 

tb = 0.5 SL Dshf	 (Sand) (5-56b) 

= tb Ab (5-57)Vb 

where Fb and Vb are the axial load (as calculated in Chapter 4) and the shear resistance 

carried by the shaft base. 

6.	 Analyze the laterally loaded shaft as a Beam on Elastic Foundations (Section 5-13) 

considering the effect of the base resistance. The base shear resistance is evaluated in 

each trial according to the lateral deflection induced at the shaft base. 

5.13	 STABILITY ANALYSIS IN THE STRAIN WEDGE MODEL 

The objective of the SW model is to establish the soil response as well as model the soil-pile 

interaction through the modulus of subgrade reaction, Es. The shape and the dimensions of the 

passive wedge in front of the pile basically depend on two types of stability which are the local 

stability of the soil sublayer and the global stability of the pile and the passive wedge.  However, 

the global stability of the passive wedge depends, in turn, on the local stability of the soil 

sublayers. 

5.13.1 Local Stability of a Soil Sublayer in the Strain Wedge Model 

The local stability analysis in the strain wedge model satisfies equilibrium and compatibility 

among the pile segment deflection, soil strain, and soil resistance for the soil sublayer under 

consideration. Such analysis allows the correct development of the actual horizontal stress 

change, Dsh , pile side shear stress, t, and soil-pile reaction, p, associated with that soil sublayer 

(see Figs. 5-2 and 5-4). It is obvious that the key parameters of local stability analysis are soil 

strain, soil properties, and pile properties. 

5.13.2 Global Stability in the Strain Wedge Model 

The global stability, as analyzed by the strain wedge model, satisfies the general compatibility 

among soil reaction, pile deformations, and pile stiffness along the entire depth of the developing 

passive wedge in front of the pile. Therefore, the depth of the passive wedge depends on the 
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global equilibrium between the loaded pile and the developed passive wedge. This requires a 

solution for Eqn. 5-1. 

The global stability is an iterative beam on elastic foundation (BEF) problem that determines the 

correct dimensions of the passive wedge, the corresponding straining actions (deflection, slope, 

moment, and shear) in the pile, and the external loads on the pile. Satisfying global stability 

conditions is the purpose of linking the three-dimensional strain wedge model to the BEF 

approach. The major parameters in the global pile stability problem are pile stiffness, EI, and the 

modulus of subgrade reaction profile, Es, as determined from local stability in the strain wedge 

analysis. Since these parameters are determined for the applied soil strain, the stability problem 

is no longer a soil interaction problem but a one-dimensional BEF problem. Any available 

numerical technique, such as the finite element or the finite difference method, can be employed 

to solve the global stability problem. The modeled problem, shown in Fig. 5-8c, is a BEF and 

can be solved to identify the depth, Xo, of zero pile deflection. 

5.14 SUMMARY 

The SW model approach presented here provides an effective method for solving the problem of 

a laterally loaded pile/shaft in layered soil. This approach assesses its own nonlinear variation in 

modulus of subgrade reaction or p-y curves. The SW model allows the assessment of the 

nonlinear p-y curve response of a laterally loaded pile based on the envisioned relationship 

between the three-dimensional response of a flexible pile in the soil to its one-dimensional beam 

on elastic foundation parameters. In addition, the SW model employs stress-strain-strength 

behavior of the soil as established from the triaxial test in an effective stress analysis to evaluate 

mobilized soil behavior. 

The SW model accounts for the vertical side shear resistance that develops effectively with large 

diameter shafts. Such resistance enhances the performance of the large diameter shafts and 

increases with progressive lateral deflection. The evaluation of the vertical side shear resistance 

is based on the assessed t-z curve and affects the shape of the predicted p-y curve. The 

formulations of the t-z curve presented in Chapters 3 and 4 are employed in the SW model 

analysis and coupled with the shaft deformations. 
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Compared to empirically based approaches which rely upon a limited number of field tests, the 

SW approach depends on well known or accepted principles of soil mechanics (the stress-strain

strength relationship) in conjunction with effective stress analysis. Moreover, the required 

parameters to solve the problem of the laterally loaded pile are a function of basic soil properties 

that are typically available to the designer. 
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Fig. 5-1  Characterization of Large Diameter Long, Intermediate or Short Shafts
 

In Terms of a) Forces and b) Nonlinear Springs
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Fig. 5-2 The Basic Strain Wedge in Uniform Soil 
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Fig. 5-3 Deflection Pattern of a Laterally Loaded Long

 Shaft/Pile and the Associated Strain Wedge 
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Fig. 5-4  Characterization and equilibrium of the SW model 
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Fig. 5-7 The Linearized Deflection Pattern of a Pile/shaft Embedded in Soil Using the 
Multi Sublayer Strain Wedge Model 
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Fig. 5-8 Soil-Pile Interaction in the Multi-Sublayer Technique 
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Fig. 5-9 The Proposed Geometry of the Compound Passive Wedge 

5-35
 



Fig. 5-10 Distortion of the Wedge a), The Associated Mohr Circle of Strain  b), and 
the Relationship Between Pile Deflection and Wedge Distortion c) 
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Fig. 5-11 Relationship Between Horizontal Stress Change, Stress Level, 

and Mobilized Friction Angle 
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Fig. 5-12 The Developed Stress-Strain Relationship in Soil 
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Fig. 5-13 The Nonlinear Variation of Stress Level Along 

the Depth of Soil at Constant Strain 

5-37
 



Fig. 5-14 The Employed Side Shear Stress-Displacement Curve in Clay 
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Fig. 5-15. The Nonlinear Variation of Shear Stress Level (SLt) with depth in Clay 

5-39
 



     

  

 

  

0 

0.25 

0.5 

0.75 

1 

1.25 

1.5 

g 5
0 

(%
) 

Uniformity Coefficient, Cu 

1.182610 

0 0.25 0.5 0.75 1 1.25 1.5 

Void Ratio, e 

Fig. 5-16 	 Relationship Between ee 50, Uniformity Coefficient (Cu) 
and Void Ratio (e) (Norris 1986) 

5-40
 



Fig. 5-17 Relationship Between Plasticity Index (PI) and Effective Stress Friction
 

Angle (jj ) (US Army Corps of Engineers 1996)
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Fig. 5-19 Relationship Between Effective Stress and Total Stress Conditions 
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 Fig. 5-20  The Assembling of Pile Head Deflection 
Using the Multi-Sublayer Technique 
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Fig. 5-21 Vertical Side Shear Stress Distribution on the Shaft Cross Section 
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