CHAPTER 7

FAILURE CRITERIA OF SHAFT MATERIAL

7.1 INTRODUCTION

Deformationsin any structural eement depend upon the characterigtics of the load, the dement shape and
itsmaterid properties. With laterdly loaded shafts and shafts, the flexura deformations are based on the
applied moment and the flexurd giffness of the shaft at the cross section in question. In addition, the flexurd
diffness (El) of the shaft isafunction of the Y oung’'s modulus (E), moment of inertia (1) of the shaft cross
section and the properties of the surrounding soil. Given the type of materid, concrete and/or sted, the
properties of shaft materia vary according to the level of the applied stresses.

Behavior of shafts under latera loading is basicaly influenced by the properties of both the soil and shaft
(shaft materiad and shape). The nonlinear modeling of shaft materid, whether it is sted and/or concrete,
should be employed in order to predict the vaue of the lateral load and the redlistic associated bending
moment and shaft deflection especidly a large vaues of shaft-head deflection and the onset of shaft materid
falure. Itisknown tha the variation in the bending stiffness (El) of alaterdly loaded shaft is a function of
the bending moment digtribution aong the shaft (moment-curvature, M-F , rdationship) asseenin Fig. 7-1.

Consequently, some of the shaft cross sections which are subjected to high bending moment experience
areduction in bending stiffness and softer interaction with the surrounding soil. Such behavior is observed
with drilled shafts and stedl shafts at advanced levels of loading and has an impact on the laterd response
and capacity of the loaded shaft. The shaft bending stiffnesses dong the deflected shaft change with the
leve of loading, the M-F reationship of the shaft materid, and the soil reaction which affects the pettern
of shaft deflection. Therefore, the equilibrium among the ditributions of shaft deflection, bending momernt,
bending stiffness, and soil reaction dong the shaft should be maintained.
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In the case of a sted shaft, the Y oung' s modulus remains congtant (elastic zone) until reaching the yield
gtress, f, (indicating the initid yielding), a which time the sted starts to behave dadtic-plagticaly with
different values of the secant Young's modulus. Once a plagtic hinge develops, the shaft cross section
responds in plagtic fashion under acongtant plastic moment. But, in the case of a concrete shaft, the stress-
drain rdaionship variesin anonlinear fashion producing a S multaneous reduction in Y oung's modulus and,
in turn, the stiffness of the shaft cross section.  Furthermore, once it reaches a critica value of strain, the
concrete ruptures catastrophically.

The technique suggested by Reese (1984), which employs the Matlock-Reese p-y curves, requires
separate evduation of the M-F relaionship of the shaft cross section and then adoption of a reduced

bending diffness (El,) to replace the origind shaft bending stiffness (EI). The suggested procedure utilizes
this reduced bending stiffness (El;) over the full length of the sheft at dl levels of loading. Assuming a
reasonable reduction in bending stiffness, particularly with drilled shafts, is a critical matter that requires
guidance from the literature which has only limited experimentd data. At the same time, the use of one

congtant reduced bending stiffness for the shaft does not reflect the redl progressive deformations and forces
associated with the steps of laterd loading. However, this technique may work quite well with the ed H-

pile which fails approximatdy once the shaft flange reaches the yidding stage (occurs rapidly). In generd,

the response of the shaft (shaft-head load vs. deflection, and shaft-head load vs. maximum moment) is

assessed based on a congtant bending stiffness (El;) and is truncated a the ultimate bending moment of the
origind shaft/drilled shaft cross section. The moment-curvature rdlaionship, and thus the maximum bending
moment carried by the shaft cross section should be evauated firgt.

Reese and Wang (1994) enhanced the technique presented above by computing the bending moment
didribution along the shaft and the associated value of El a each increment of loading. Reese and Wang
(1994) concluded that the bending moment dong the shaft does not depend strongly on structurd
characterigtics and that the moment differences due to El variations are smdl. It should be noted that the
effect of the varying El on the bending moment values aong the drilled shaft was not obvious because the
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El of the drilled shaft had no effect on the p-y curves (i.e. modulus of subgrade reaction) employed in their
procedure. Therefore, it was recommended that a single vaue of El of the cracked section (congtant value)
be used for the upper portion of the shaft throughout the analyss. Contrary to Reese and Wang's
assumption, the variation in the vaue of El has a sgnificant effect on the nature of the p-y curve and
modulus of subgrade reaction [Ashour and Norris (2000); Y oshida and Y oshinaka (1972); and Vesc
(1961)] especidly in the case of large diameter shafts.

The main purpose in this chapter is to assess the moment-curvature rdaionship (M-f ) of the loaded shaft
in a convenient and smplified fashion consdering the soil-sheft interaction. The prediction of the moment-
curvature curve adlows one to redigticaly determine the variation of shaft diffness (El) as a function of

bending moment.

The SW modd dlows the designer to include the nonlinear behavior of the shaft materia and, as aresult,
to find out the effect of materia types on the shaft response and its ultimate capacity based on the concepts
of soil-shaft interaction.

7.2 COMBINATION OF MATERIAL MODELING WITH THE STRAIN WEDGE
MODEL
The bending moment digtribution aong the deflected length of alateraly loaded shaft varies as shown in Hg.
7-1. Thisprofile of moment indicates the associated variation of shaft stiffness with depth if the Sress-grain
relationship of shaft materia is nonlinear. The strain wedge modd is capable of handling the nonlinear
behavior of shaft materid as wdl as the surrounding soil.  The multi- sublayer technique, presented in
Chapter 5, dlows oneto provide an independent description for each soil sublayer and the associated shaft
segment. The effect of shaft materid is conddered with the globd sability of the loaded shaft and the shepe
of the developing passive wedge of soil in front of the shaft. During the iteration process using the SW
model, the stiffness of each shaft segment, which has alength equd to the depth of the soil sublayer, isa
function of the caculated bending moment a the associated shaft segment, as seenin Fg. 7-1. Therefore,
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the shaft is divided into anumber of segments of different vaues of flexura iffness under apaticular laterd
load.

In order to incorporate the effect of materid non-linearity, numerica materid modds should be employed
with the SW modd. A unified stress-strain approach for confined concrete has been employed with the
reinforced concrete shaft as well asthe sted pipe shaft filled with concrete. In addition, sted is modeled
using an dadtic perfectly plagtic uniaxid stress-drain relaionship which is commonly used to describe sted
behavior. The procedure presented provides the implementation of soil-shaft interaction in afashion more
sophiticated than that followed in the linear andlysis with the SW modd presented in Chapter 5.

The gpproach developed will dlow oneto load the shaft to its actud ultimate capacity for the desired laterd
load and bending moment according to the variation of shaft material properties dong the shaft length.

7.2.1 Material Modeling of Concrete Strength and Failure Criteria

Based upon a unified stress-strain gpproach for the confined concrete proposed by Mander et . (1984
and 1988), a concrete modd is employed with circular and rectangular concrete sections. The proposed
modd, which is shown in Fig. 7-2, has been employed for adow strain rate and monotonic loading. The

longitudinal compressive concrete stress f, is given by

_ f . Xr
r-1+x'

(7-1)

C

where f. symbolizes the compressve strength of confined concrete.
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(7-2)

? o

where e, indicates the axial compressive strain of concrete.

é o) ou
ex:e:oe1+5g&-lig (7-3)
é fo 20

where e is the axid drain a the peak stress. f,, and ey, represent the unconfined (uniaxia) concrete
strength and the corresponding strain, respectively. Generdly, e, can be assumed equal to 0.002, and

_ B (7-4)

where

E.=57,000( f_)” (psi) (7-5)
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f
Eec= —= (7-6)
eCC

E. denotestheinitiad modulus of eadticity of the concrete under dowly gpplied compression load.

Asmentioned by Paulay and Priestly (1992), the drain at pesk stress given by Eqgn. 7-3 does not represent
the maximum useful strain for design purposes. The concrete strain limits occur when transverse confining

ded fractures. A conservative estimate for ultimate compression strain (ey) is given by

14r f m
6., = 0.004+ ;—V“es (7-7)

cc

where eq, isthe sted dtrain at maximum tensile stress (ranges from 0.1 to 0.15), and r ¢ is the volumetric
ratio of confining stedl. Typica vauesfor ey, range from 0.012 to 0.05. f,, represents the yield stress of

the transverse reinforcement.

In order to determine the compressive strength of the confined concrete (f), a conditutive modd (Mander
et d. 1988) isdirectly related to the effective confining stress (f;) that can be developed at the yield of the

transverse reinforcement.
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(7-8)

@D> (D> (D~

7-6



For circular and square section of concrete, f; is given by

f,=095r f, (7-9)

Monotonic tensile loading
Although concrete tenson strength isignored in flexurd strength caculation, due to the effect of concrete
confinement it would be more redigtic if it were congidered in the calculation. As suggested by Mander et
d. (1988), alinear dress-drain rdationship is assumed in tenson up to the tensle srength (). Thetendle

dressis given by

f=E.e for fE£f, (7-10)

and

o= fu (7-12)
E.

where

f,=9(f, )" (psi) (7-12)

If tendledrain e is greater than the ultimate tendle srain (ey,), f; IS assumed to be equal to zero.

7.2.2 Material Modeling of Stedl Strength
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There are different numericd modes to represent the stress-dtrain relaionship of sted. The modd
employed for sed in this sudy islinearly dadtic-perfectly plagtic, as shown in Fig. 7-3. The complexity of
this numericad modd is located in the plagtic portion of the modd which dose not include any dran
hardening (perfectly plastic).

The dadtic behavior of the sed islimited by the linearly dadtic zone of thismode a which the drainisless
than theyidd drain

f y
e,=— (7-13)

where f, istheyield stress of sted, and e, isthe vaue of the Sted drain &t the end of the dagtic zone where
the stressisequa tof,. E, isthedastic Young'smodulus of steel which is equal to 29,000 kipsfinch?.

When the value of sted stress (fs) at any point on the cross section reaches the yield stress, the Young's
modulus becomes less than Ey, of the dastic zone. The initid yidding takes place when the Stress a the
farthest point from the neutra axis on the stedl cross section (point A) becomes equd to the yield stress (1),
asshown in Fg. 7-4a

Theinitid yielding indicates the beginning of the dagtic-plagtic response of the sted section. By increasing
the load, other internal points on the cross section will satisfy the yield stress to respond plastically under
acongtant yield stress (f,), as seen in Figure 7-4b. Once dl points on the sted section satisfy a normal
stress (fs) equal to the yield stress (f,) or a strain value larger than the yield dtrain (g)), the stedl section
responds as a plagtic hinge with an ultimate plastic moment (M) indicating the complete yiding of the sted
section, as presented in Fig. 7-4c.
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During the dadtic-plagtic stage (after the initid yielding and before complete yidding) some points on the
stedl section respond dadticaly (f£ f,) and the others respond plasticaly (fs = f,) with different vaues of
Young'smodulus (Es) , as presented in Fig. 7-3. The vaues of normd drain are assumed to vary linearly
over the deformed cross section of stedl.

If the strain & any point on the stedl cross section islarger than the yield gtrain (g,), the plastic behavior will
be governed by the flow of the steel under a congtant siress (fy) at the point in question. Regardless of
whether the section is under dadtic, dadtic-plagtic or plagtic gates, the grainislinearly didributed over the
whole ged section. In addition, the drain a any point is controlled by the vaues of strain a other locations
in order to keep the gtrain ditribution linear. Generaly, the externa and interna moments over the sted
section should be in agtate of equilibrium.

7.3 MOMENT-CURVATURE (M-F ) RELATIONSHIP

The am of deveoping the moment-curvature relationship of the shaft materid is to determine the variaion
of theflexurd diffness (El) a& every levd of loading. The normd dress (s) a any cross section dong the
shaft length is linked to the bending moment (M) and curvature (f ) by the following equations:

2
El ‘; X32’: M (7-14)
Elf=t - (7-15)
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d €&
f = g XZ: 7 (7'16)
o= -— (7-17)
r o
where
sx=Ee= Ef z (7-18)

z =thedigtance from the neutra axisto the longitudind fiber in question
r, =theradiusof curvature of the deflected axis of the shaft
e, =thenormd dran at the fiber located z-distance from the neutral axis.

The above equations are based on the assumption of a linear variation of gtrain across the shaft cross

section. In addition, the shaft cross section is assumed to remain perpendicular to the shaft axis before and

after deforming, as shown in Fg. 7-5.

74  ANALYS SPROCEDURE

The andysis procedure adopted conssts of caculating the value of bending moment (M;) at each cross

section associated with a profile of the soil modulus of subgrade reaction which isinduced by the gpplied

load at the shaft top. Then, the associated curvature (f ), diffness (EI), normd dress (s ) and normd drain

(ex) can be obtained. This procedure depends on the shaft materid. The profile of moment distribution
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aong the deflected portion of the shaft is modified in an iterdtive fashion dong with the vaues of the drain,
stress, bending tiffness and curvature to satisfy the equilibrium among the applied load and the associated
reponses of the soil and shaft. Based on the concepts of the SW mode, the modulus of subgrade reaction
(i.e py curve) isinfluenced by the variations in the shaft bending stiffness a every shaft segment. This
procedure guarantees the incorporation of soil-shaft interaction with the materid modeing. The technique
presented gtrives for amore reditic assessment of the shaft deflection pattern under laterd |oading and due

to the nonlinear response of shaft materid and soil resistance.

741 Steel Shaft

Sted shaftsinvolved in this study have circular cross sections, as seenin Fig. 7-6. The cross section of the
ded shaft isdivided into a number of horizonta strips (equa to atota of 2m) pardld to the neutra axis.
Each drip has a depth equd to the thickness of the pipe shaft skin, as seenin Fig. 7-7. The moment goplied
over the cross section of the shaft segment (i) is M;, and the normd dressat astrip (n) is(fo), (L £ n£ m).

Using Egns. 7-17 and 7-18, the stress and strain digtributions over the cross section of each shaft segment

can be determined as

(7-19)

(e),= zf, 1£nEm (7-20)
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(fs)n:(ES)n (eS)n

(7-21)

where & £ Eg,; T isthe curvature at shaft segment (i) which is congtant over the stedl cross section at the
current level of loading; z, indicates the distance from the neutrd axis to the midpoint of rip n; ©€s)n
represents the strain at strip n; (El); representsthe initid gtiffness of the shaft segment (i); | isthe moment
of inertia of the sted cross section of the shaft segment (i) which is dways condant; and E,, symbolizesthe
elagtic Young's modulus of the sted!.

1. Elastic Stage

The Y oung's modulus of any gtrip of the stedl section (i) is equal to the stedl elastic modulus (29x10° ps)
aslong asthe dress (es), isless or equd to theyidd srain. Consequently, thereis no change in the diffness
value of the shaft ssgment (i) if e at the outer strip (n = 1) islessthan or equd to e,. Thisstageissmilar
to the linear andys's (congtant El) of the SW modd presented in Chapter 5.

2. TheElastic-Plastic Stage

Oncethe caculated strain at the outer strip based on Eqn. 7-20islarger then e, the stress (f9), determined
at the outer grip (n = 1) using Eqgn. 7-21 will be equd to theyidld dress. Therefore, initid yielding occurs
and the dadtic-plagtic stage begins. During the dastic-plagtic stage, the strips of the stedl cross section
experience a combination of eastic and plastic responses with different vaues of the secant Young's
modulus (Es). Some gtrips behave dadtically (es £ e, and fs £ ) , and the others behave pladtically (es >
e, and fs = f) with different values of the secant Y oung's modulus (Ey), as shown in Figs. 7-3, 7-4 and 7-8.
The normal stresses on the sted cross section are redistributed in order to generate a ressting moment

(MR); that balances the applied moment (M;) and satisfies the following equation:
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Mi=(Mgr)=(Me)+ (My) (7-22)

where (M) and (M,); represent the internal eagtic and plastic moments induced over the sted cross
section (i).

The internd dastic moment (My); represents the internd moment exerted by the strips (my) which behave
eladticaly and can be obtained as

(Me):S(fs)inZi (1£j£m,) (7-23)

The interna plastic moment (My); is the moment generated by the yielded strips (m) which respond
plagtically and can be cadculated using the following equation:

(My)=STt, Az (1£kEm,) (7-24)

where A isthe area of the sted dtrip, and

2m=m+m (4.25)

For the fird iteration of the solution in this stage, the stedl cross section experiences a resisting interna
moment (Mg); lessthan the externd moment (M;). Therefore, the stedl cross section of the shaft segment
(i) should maintain a modified stiffness vaue for the shaft segment in question, i.e. (El)i mog. This reduced
vaue of diffness at shaft ssgment (i) is associated with an increase in the vaue of curvature such that the

(fi )mod:fi ( '\I>I/Ii ) 7-13 (7-26)



new vaue of curvature, (f i)mog, IS

The modified diffness value a shaft ssgment (i) can be computed using the following equeation,

(EI )i,mod= ( M.

f i )mod (7- 27)

The above procedure should be performed with al the unbaanced segments aong the deflected portion
of the loaded shaft a each step of loading.

The globd gtahility problem of the laterdly loaded shaft is resolved under the same leve of loading and soll
resstance usng the modified vaues of diffness of the shaft ssgments (Egn. 7-27). Consequently, the new
moment digtribution (M;) aong the shaft length is assessed during eech iteration. The modification for sheft
curvature and, therefore, stiffness vaues at the unbalanced segments continues until Egn. 7-22 is satisfied
over dl the defelcted segments of the shaft.

3. Plastic Stage

The dagtic-plagtic stage continues until the stedl cross section reaches a condition of complete yield.
Theregfter, dl strips of the stedl section will be subjected to the yield stress (f,) and strain values lager than
e, , aspresented in Fig. 7-9. At thislevel of shaft head |oad, the sted section exhibits a plastic moment
(Mp) which represents the ultimate moment that can be carried by the stedl section. Once the stedl section
reeches the plagtic moment, a plagtic hinge develops to indicate the beginning of the pladtic Sage a the shaft
segment in question. The plastic moment is expressed as
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M,=Sf, Az (7-28)

Equations 7-26 and 7-27 are employed in order to obtain the desired vaues of curvature and the

associated stiffness a the plagtic section is

( El )i,mod: zf_'vlpr (7_29)

During the plagtic stage, the moment capacity and the stress over the stedl section are restricted to the
plastic moment (M) and the yield stress (fy), respectively. However, the strain and curvature values are
free to increase in order to produce reduced diffnesses with the higher leve of loading.

The ressting moment of the completely yielded section (plastic hinge) is dways equd to M. If the externd
moment (M;) which is calculated from the globd stability is larger than M, Egns. 7-26, 7-28 and 7-.29 will
be employed. The iteration process continues until satisfying an externd moment value equd to the plagtic
moment at the shaft ssgment in question.

The development of the plastic hinge on the shaft does not mean the failure of the shaft but leads to a
limitation for the shaft-head load. After the formation of the plagtic hinge, the shaft deflects at ahigher rate
producing larger curvatures and smaller stiffnesses to balance the applied load. Therefore, another plastic
hinge may develop a another location on the sheft. If the soil has not failed at the development of the plastic
hinge, the shaft may exhibit alaterd |oad capacity dightly larger than the load associated with the plastic
hinge formation due to increase in soil resstance. The laterdly loaded shaft is assumed to fail when the

outer rip at any shaft segment experiences agtrain value larger than 0.15.

7.4.2 Renforced Concrete Shaft
The reinforced concrete shaft has a circular cross section and to be divided into atotd number of horizonta
7-15



grips of (2m) as seen in Fig. 7-10. Unlike the cross section of a sted shaft, the cross section of the
reiforced concrete shaft is not symmetrical around the neutra axis as a result of the different behavior of
concrete under tensile and compressive stresses. The incorporation of concrete tensile strength reflects the
actuad response of the reinforced concrete shaft. As presented in Section 7.2.1, the employment of
concrete confinement has a sgnificant influence on the concrete behavior (strength and strain vaues).

The resistance of the concrete cover (outside the confined core of concrete) is neglected. Therefore, the
initid stiffness of the whole concrete cross section (El); represents the effective concrete section which is
the confined concrete core. The curvature (f ;) at the concrete section (i) isinitidly determined based on
the gpplied externd moment M; and the initid stiffness of the reinforced concrete cross section (EI),, i.e.

ﬂ=(g%— (7-30)

)

Based on alinear didribution of strain (€) over the reinforced concrete cross section, the strain a any strip
(n) can be obtained using Eqgn. 7-20 and is expressed as

(e)=zf, 1EnEm (7-31)

Egns. 7-1 and 7-21, which represent the numerical models of the compressve stress of confined concrete
and tendle stress of stedl, respectively, are used to calculate the associated concrete stress (f.) and stedl
stress (fs) a each strip (n). Inthis study, the tensile stress (f;) is assumed to be equd to the compressive
stress (f,) if thetensle grain (&), islessthan ey, which ismore conservative than Egn. 7-10. Therefore,
the reinforced concrete cross section remains symmetric (the centerline represents the neutra axis) aslong
as e a the outer rip (n=1) islessthan e,,. Under the conditions of a symmetric reinforced concrete
section, the moment equilibrium and gtiffness modification a any shaft segment (i) can be expressed as
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(Me)=S2[( f A )zt (T, A), 2] (1£nEm) (7-32)

Oncethe vadue of the tensle strain at the outer strip of any shaft cross section exceeds ey, the outer strip
on the tenson sde fails and the cross section becomes unsymmetric. Theresfter, the neutrd axisis shifted
towards the compression side as shown in Fig. 7-10. In order to accurately estimate the new postion of

the neutral axis, the cross section should be in equilibrium under the compressve and tensile forces (Feom

and Fe) Or

(Fom )= (Fien) (7-33)
where

(Fom)=S(Af +AT,), 1£nfn, (7-34)
and

(Fen)=S(Af + A ), 1£n£n, (7-35)

n, and np are the numbers of strips in the compression and tension zones of the concrete cross section,

respectively. At any grip in the tenson zone, f; isequd to zero when the tendle train is greeter than ey,

Having thevauesof n andn, (2m=n + ny) and usng Egns. 7-33 through 7-35, the location of the neutrd
axis can be identified, and the ressting moment can be determined as

where
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( M R )i = ( M com+ M ten )i (7'36)

(Mem)=S[(f.A+T . A)(2),] (1£n£n,) (7-37)

(Men ) =S[(f A+ A)(2)] (1£n£n,) (7-38)

where z. and z are the distance from the neutrd axis to the gtrip in question in the compression and tension
Zones, respectively.

In addition, the behavior of stedl bars in the compressive and tensile zones is subjected to the steed mode
presented in Section 7.2.2. Once the strain of any steel bar is greater than or equal to ey, fs will be equa
to f, in Egns. 7-34 through 7-38. The equations above are influenced by the ultimate vaues of concrete
grength and strain (e, and f.) that are associated with concrete confinement as presented in Section 7.2.1.

If the calculated moment (MR); is less than the externd moment M;, the cross section curvature will be

modified to obtain new vaues for the curvature and stiffness to baance the gpplied moment, i.e.

M
f =f ' 7-39
( |)mod fI(MR)i ( )

The modified diffness value a shaft segment (i) can be computed using the following equeation,
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( El )i,mod: (f ) (7_40)

By iteration, Eqns. 7-33 through 7-40 are emlpoyed to obtain the desired vaues of the curvature and the
diffness of the shaft ssgment (i) in order to generate aressting moment (Mg); equd to the externd moment
(M;). The above procedure should be performed with al unbaanced segments aong the deflected portion
of the loaded shaft a each leve of loading.

The globd gability problem of the lateraly loaded shaft is solved again under the same leve of loading and
using the modified vaues of giffness of the shaft segments.  Consequently, the bending moment (M) is
redistributed aong the shaft length.

Once any concrete strip under compressive stress reaches the ultimate strain e, (Eqn. 7-7), the strip fails
and is excluded from the ressting moment. The sted barsfail when the sted drain reachesavadue of 0.15.
The strength of afailed strip is assumed to be equd to zero in Egn. 7-28. However, the shaft fails when
the stiffness of any shaft ssgment diminishesto asmadl vaue that does not provide equilibrium between the
externd and the ressting moments. Therefore, the plastic moment of a concrete shaft represents the largest
induced moment in the shaft that can be sustained before failure,

7.4.3 Concrete Shaft with Steel Case (Cast in Steel Shell, CISS)

In the current case, the shaft cross section is treated as a composite section smilar to the reinforced
concrete shaft. The shaft cross section (steel and concrete) is divided into anumber of grips (equd to 2m)
as shown in Fig. 7-9. The thickness of each trip is equa to the thickness of the sted shdll (t). Both
numerical materid models presented in Section 7.2 are employed here using an iterdive technique governed
by the deformation criteria of the numerica modds.

Thenormd drain is assumed to vary linearly over the shaft cross section which is perpendicular to the shaft
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axis, asshown in Fg. 7-11. Therefore, the curvature is constant over the whole composite section. The
goplied bending moment (M;) a shaft segment (i) generatesinitid vaues for curvature, dresses and srains
in both the sted pipe and the concrete section as described in Section 4.2. Similar to the reinforced
concrete section, the concrete resistance in the tension zone is considered. 1t should be noted thet the sted!

pipe provides large concrete confinement resulting in large vaues of concrete strength and strain.

The composite cross section of shaft behaves symmetricdly as long as the tensle srain at the outer srip
of concrete (n = 2) islessthan ey,. The srain values of sted and concrete are obtained using Eqns. 7-30
and 7-31. Then the associated stress values of concrete and stedl are calculated based on Egns. 7-1 and
7-21. Generdly, the stiffness the composite cross section is modified according to the equilibrium between
the externd and internal moments as expressed by Eqn. 7-32 for the symmetric section.

When the tensile strain of the outer trip of concrete (n = 2) exceeds ey, the composite cross section in no
longer symmetric and the neutrd axis location is shifted towards the compresson zone and should be
determined by using an iterative technique which indudes Eqgns. 7-36 through 7-39. It should be noted that
the concrete tensile stress (f;) a any falled drip in the tenson zone is equa to zero. In addition, a any drip,
the stedl stressisequd tof, if the strain is equal to or larger than e,. If the calculated ressting moment
(MR); does not match the externd moment (M), the gtiffness of the shaft segment in question is modified
usng Eqgn. 7-40.

The above procedure is performed with dl shaft segments under the same leve of loading. This procedure
isrepegted in an iterative way using the modified stiffness va ues to solve the problem of the laterdly loaded
shaft (globa gtability). The iteration process continues until there is equilibrium between the externd and
ressting moments a al shaft segments. The distribution of bending moment (M), dong the length of the
shaft, and the deflection pattern is based on the modified shaft iffnesses and the resstance of the

surrounding soil.

7-20



It should be noted that the concrete section will not fal before a plagtic hinge develops.  This occurs
because the stedl yields at a strain (e,) much less than the ultimate strain of concrete (e.,). However, the
faled drips of concrete (in ether the tenson or compression zones) are subtracted from the composite
section resulting in afagter drop in the stiffness of the shaft segment in question. It should be emphasized
that there is no sudden failure for the concrete portion of the composite section because of the sted shell.

The dtiffness of the loaded shaft and the effective area of the deflected shaft cross section vary according
to the levd of loading. Therefore, the actud moment-curvature relationship and the ultimate moment carried
by a reinforced concrete shaft or a sted pipe shaft filled with concrete should be caculated using the

technique presented.

7.4.4 Reinforced Concrete Shaft with Steel Case (Cast in Steel Shell, CISS)

Similar to the shaft cross section presented in Section 4.4.3, the shaft cross section is trested as a composite
section. The shaft cross section (sted and reinforced concrete) is divided into a number of strips (equd to
2m) as shown in FHg. 7-12. Thethickness of each grip is equd to the combined thickness of the sed shell
(ts) and the thickness equivadent to the longitudina reinforcement, As [t = As/ 3.14 / (Zs - t9)]. Both
numericd materid modds presented in Section 7.2 are employed here usng an iterative technique governed
by the deformation criteria of the numerica modds.

Thenormd drain is assumed to vary linearly over the shaft cross section which is perpendicular to the shaft
axis, asshown in Fg. 7-12. Therefore, the curvature is constant over the whole composite section. The
goplied bending moment (M;) a shaft segment (i) generatesinitid vaues for curvature, dresses and srains
in both the sted pipe and the concrete section as described in Section 7-2. The current shaft cross section
(Fig. 7-12) is andyzed by following the procedure gpplied to the CI SS section presented in Section 7.4.3.

75 SUMMARY
A technique for the indlusion of nonlinear materid modding for sted, concrete, and composite Sted concrete
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shafts has been devel oped and demondtrated in this chapter. The strain wedge model exhibits the capability
of predicting the response of alaterdly loaded shaft based on the nonlinear behavior of shaft materid. The
technique presented dlows the designer to evauate the location of a plastic hinge developed in the shaft,
and to determine the redlistic values of the ultimate capacity and the associated deflection of the |oaded
shaft.

The nonlinear behavior of the shaft materia has an influence on the laterd response and capacity of the
shaft/shaft. This effect is dependent on the vaues of bending moment (level of loading). In turn, the
modulusof subgrade reection (i.e. the p-y curve) is affected by the changed bending moment, the reduced
bending gtiffnesses, and the changed deflection pattern of the shaft/shaft.  Without the appropriate
implementation of materid modding, the shaft/shaft capacity, and the associated deflection pattern and
bending moment distribution will be difficult to predict with any degree of certainty.
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Fig. 7-1 Deflection and Moment Distributionsin a Laterally L oaded Shaft
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Fig. 7-5

_ £
W f%ﬂml Axls
5 Nowral A

Normal Strain Distribution

A Cross sectlon of a Concrete Flle Under Bending Moment

Flexural Deformations of a Pile Segment subjected to Bending M oment

7-26



Fig. 7-6 A Cross Sections of Steel Shaft
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Fig. 7-7 Sted Sections Divided into Horizontal Strips
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Behavior of Steel Shaft Cross Section in the Elastic-Plastic Stage

Behavior of Steel Shaft Cross Section in the Plastic Stage
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Fig. 7-10  Behavior of a Reinforced Concrete Shaft Cross Section Divided into Strips
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Fig. 7-11  Composite Cross Section of a Concrete Shaft with Steel Case (CISS)
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Fig. 7-12 A Shaft Cross Section of Reinforced Concrete Cast in Steel Shell
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