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Abstract: 

  Shortly after the 1994 Northridge Earthquake, Caltrans geotechnical engineers charged with 
developing site-specific response spectra for high priority California bridges initiated a research 
project aimed at broadening their perspective from simple geotechnical site response analyses to a 
more comprehensive seismological approach.  The project was centered on a series of seminars on 
seismological theory and analyses using a pair of stochastic numerical ground motion models that 
allowed uniform treatment of uncertainties in recognized earthquake source, path, and site effects.  
The project was not intended to produce a “report” per se, but rather, was meant to strengthen the 
knowledge and perspective of practicing engineers.  Nevertheless, hard copy of seminar notes and a 
portion of the analyses have now been recovered, scanned and compiled into this volume for their 
archival and educational value. 

  Seven sets of seminar notes and two application examples are presented.  Two seminars provide 
an overview of site-specific specification of ground motion from a seismological perspective.  Another 
seminar provides background on seismological instrumentation and processing of strong-motion 
recordings.  A pair of seminars addresses empirical attenuation models and outlines the variety of 
numerical ground motion modeling approaches.  The final pair of seminars systematically explore 
source, path and site effects on ground motion and various strategies employed to capture these 
effects for purposes of prediction.  The two application examples use the stochastic model to explore 
the impacts and uncertainties of geotechnical site effects within the context of the broader 
seismological problem.   
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Application Example A 

 

Variability in Site-Specific Seismic Ground Motion Design Predictions 

 

Reference: ASCE Conference “Uncertainty in the Geologic 
Environment: From Theory to Practice”, August 1-3, 1996. 

 

Abstract: 

   Variability in computed site-specific seismic ground motion is examined over a wide 
range of periods using a stochastic model which incorporates both a finite source and 
an equivalent-linear formulation for non-linear site effects.  A suite of examples involving 
a single scenario earthquake and a range of site conditions, source-to-site distances, 
and depths of characterization are used to illustrate how parametric variability can be 
systematically examined on a case-specific basis. Emphasis is placed on the relative 
contributions of geotechnical site parameters including the shear-wave velocity (Vs) 
profile and both modulus reduction (G/Gmax) and hysteretic damping (D) curves.  It is 
shown that the parameters which control variability in ground-motion predictions are a 
case-specific function of site type, amplitude of motion, and period range of interest to 
the designer.  The impact of site effects is shown to be the predominant source of 
parametric response-spectra variability for periods of up to several seconds for soil sites 
experiencing strong to moderate levels of ground motion.  All results are described 
within the framework of parametric and modeling components of total variability in 
design predictions, and general trends are developed regarding conditions where 
extensive geotechnical site characterization efforts provide maximum benefit.  
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Application Example B 

 

Case Study: Site-Specific Motions at I-10 La Cienega Bridge in LA 

 

Reference: ROSRINE Data Workshop, December 15-16, 1998 
 

Abstract: 

   Extensive geotechnical site characterization work was completed as part of the installation of the 
Caltrans/CDMG deep strong-motion array located at the I-10 La Cienega site in Los Angeles and as part 
of the ROSRINE (Resolution of Site Response Issue from the Northridge Earthquake) research project to 
explore uncertainties in earthquake site response.  Key geotechnical parameters affecting site response 
are the shear-wave velocity profile and the non-linear properties (normalized modulus and material 
damping) assigned to soil strata.  To capture uncertainty in velocity profile, alternative geophysical 
methods including P-S suspension, crosshole, downhole and Spectral-Analysis-of-Surface-Waves 
(SASW) surveys were performed in close proximity by independent organizations.  Similarly, three 
different types of laboratory testing equipment were employed by independent organizations on near-
identical soil specimens to capture uncertainty in non-linear properties caused by testing differences.  
Extensive sampling and testing of specimens obtained at depths up to 240 m allowed development of a 
preliminary depth-dependent model for non-linear properties including representation of uncertainties 
related to differences in soil type and potential sampling disturbance effects. 

  The stochastic method described in Application Example A is used to conduct sensitivity analyses using 
the extensive data available from the La Cienega site.  First, the sensitivity of calculated surface motion to 
level of detail in the interpretation of shear-wave profile is explored; Differences are shown to be minimal 
with less detail (smoother velocity gradient) providing a slightly higher surface motion.  This is conducted 
using both randomized and non-randomized velocity profiles.  An important finding is that calculated 
median surface motions for the non-randomized profiles (regardless of level of detail) are significantly 
(50% to 100%) higher than those from the randomized analysis.  Next, another series of analyses are 
conducted to explore the sensitivity of surface motions to the non-linear soil model employed; Results 
show very high sensitivity to non-linear model with depth-dependent models producing much higher 
motions.  Linearizing the soil model below 100 m achieves substantial convergence.  Finally, the impact 
of potential soil disturbance is shown to be about a 20% effect for this site profile. 
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La Cienega Site - Simplified CJR
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La Cienega Example:
Fig. 1
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La Cienega Example:
Fig.2a

Influence of Vs Profile Detail
Profiles Randomized, Lab Model
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La Cienega Example: Alternate Non-Linear Models
Fig. 3a 280-m Profile; Median
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Note: There is color error in the lower figure.  The 2nd largest spectra corresponds to BNL model.   



La Cienega Example:
Fig. 4a
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La Cienega Example:
Fig. 7a

lnfluence of Disturb-Adjust Factor
Detailed Profileo Randoin ized
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